PeerJ
-
Electrical stimulation (ES) has a long history of successful use in the clinical treatment of refractory, non-healing bone fractures and has recently been proposed as an adjunct to bone tissue-engineering treatments to optimize their therapeutic potential. This idea emerged from ES's demonstrated positive effects on stem cell migration, proliferation, differentiation and adherence to scaffolds, all cell behaviors recognized to be advantageous in Bone Tissue Engineering (BTE). In previous in vitro experiments we demonstrated that direct current ES, administered daily, accelerates Mesenchymal Stem Cell (MSC) osteogenic differentiation. In the present study, we sought to define the optimal ES regimen for maximizing this pro-osteogenic effect. ⋯ This study showed that while three days of ES is insufficient to solicit pro-osteogenic effects, seven and 14 days significantly increases osteogenic differentiation. Importantly, we found that cells treated with ES for only seven days, maintained this pro-osteogenic activity long after discontinuing ES exposure. This sustained positive osteogenic effect is likely due to the enhanced expression of RunX2 and Calmodulin we observed. This prolonged positive osteogenic effect, long after discontinuing ES treatment, if incorporated into BTE treatment protocols, could potentially improve outcomes and in doing so help BTE achieve its full therapeutic potential.
-
Differently expressed circular RNAs (circRNAs) have been reported to play a considerable role in tumor behavior; however, the expression profile and biological function of circRNAs in papillary thyroid carcinoma (PTC) remains unknown. Thus, the study was aimed to characterize the circRNA expression profile to comprehensively understand the biological behavior of PTC. ⋯ The study suggests that dysregulated circRNAs play a critical role in PTC pathogenesis. PTC-related hsa_circRNA_047771 and hsa_circRNA_007148 may serve as potential diagnostic biomarkers and prognostic predictors for PTC patients.
-
Although it is broadly accepted that clinicians should endeavour to reassure patients with low back pain, to do so can present a significant clinical challenge. Guidance for how to provide effective reassurance is scarce and there may be a need to counter patient concerns arising from misinterpretation of spinal imaging findings. 'GLITtER' (Green Light Imaging Intervention to Enhance Recovery) was developed as a standardised method of communicating imaging findings in a manner that is reassuring and promotes engagement in an active recovery. This feasibility study is an important step towards definitive testing of its effect. ⋯ Failure to achieve pre-specified recruitment and follow-up rates were important outcomes of this feasibility study. We attribute failure to issues that are likely to be relevant for other clinical trials with this population. It is realistic to consider that these challenges can be overcome through careful strategy, ample funding and continued partnership with health care providers.
-
To perform a systematic review and meta-analysis of the weekend effect on the mortality of patients with upper gastrointestinal bleeding(UGIB). ⋯ The weekend effect is associated with increased mortality of UGIB patients, particularly in non-variceal bleeding. The timing of endoscopic intervention might be a factor that influences mortality of UGIB patients.
-
The variation between the actual and perceived lightness of a stimulus has strong dependency on its background, a phenomena commonly known as lightness induction in the literature of visual neuroscience and psychology. For instance, a gray patch may perceptually appear to be darker in a background while it looks brighter when the background is reversed. In the literature it is further reported that such variation can take place in two possible ways. ⋯ The model assumes that for the White's illusion, where the edges are strong and quite a few, i.e., the spectrum is rich in high frequency components, the inhibitory surround in the classical Difference-of-Gaussians (DoG) filter gets suppressed, and the filter essentially reduces to an adaptive scale Gaussian kernel that brings about lightness assimilation. The linear filter model with a Gaussian kernel is used to simulate the White's illusion phenomena with wide variation of spatial frequency of the background grating as well as the length of the gray patch. The appropriateness of the model is presented through simulation results, which are highly tuned to the present as well as earlier psychometric results.