Sensors (Basel, Switzerland)
-
We present a novel approach to improve the estimation of systolic (SBP) and diastolic blood pressure (DBP) from oscillometric waveform data using variable characteristic ratios between SBP and DBP with mean arterial pressure (MAP). This was verified in 25 healthy subjects, aged 28 ± 5 years. The multiple linear regression (MLR) and support vector regression (SVR) models were used to examine the relationship between the SBP and the DBP ratio with ten features extracted from the oscillometric waveform envelope (OWE). ⋯ Substantial reduction in the mean and standard deviation of the blood pressure estimation errors were obtained upon artifact removal. Using the sequential forward floating selection (SFFS) approach, we were able to achieve a significant reduction in the mean and standard deviation of differences between the estimated SBP values and the reference scoring (MLR: mean ± SD = -0.3 ± 5.8 mmHg; SVR and -0.6 ± 5.4 mmHg) with only two features, i.e., Ratio2 and Area3, as compared to the conventional maximum amplitude algorithm (MAA) method (mean ± SD = -1.6 ± 8.6 mmHg). Comparing the performance of both MLR and SVR models, our results showed that the MLR model was able to achieve comparable performance to that of the SVR model despite its simplicity.
-
Smartphones have been widely used recently to monitor heart rate and activity, since they have the necessary processing power, non-invasive and cost-effective sensors, and wireless communication capabilities. Consequently, healthcare applications (apps) using smartphone-based sensors have been highlighted for non-invasive physiological monitoring. In addition, several healthcare apps have received FDA clearance. ⋯ In this paper, we describe the experience of using smartphone apps with sensors in a large medical center in Korea. Among >20 apps developed in our medical center, four were extensively analyzed ("My Cancer Diary", "Point-of-Care HIV Check", "Blood Culture" and "mAMIS"), since they use smartphone-based sensors such as the camera and barcode reader to enter data into the electronic health record system. By analyzing the usage patterns of these apps for data entry with sensors, the current limitations of smartphone-based sensors in a clinical setting, hurdles against adoption in the medical center, benefits of smartphone-based sensors and potential future research directions could be evaluated.