Radiology
-
Background It is uncertain whether a deep learning-based automatic detection algorithm (DLAD) for identifying malignant nodules on chest radiographs will help diagnose lung cancers. Purpose To evaluate the efficacy of using a DLAD in observer performance for the detection of lung cancers on chest radiographs. Materials and Methods Among patients diagnosed with lung cancers between January 2010 and December 2014, 117 patients (median age, 69 years; interquartile range [IQR], 64-74 years; 57 women) were retrospectively identified in whom lung cancers were visible on previous chest radiographs. ⋯ With a DLAD, observers detected more overlooked lung cancers (average sensitivity, 53% [56 of 105 patients] with a DLAD vs 40% [42 of 105 patients] without a DLAD) (P < .001) and recommended chest CT for more patients (62% [66 of 105 patients] with a DLAD vs 47% [49 of 105 patients] without a DLAD) (P < .001). In the healthy control group, no difference existed in the rate of chest CT recommendation (10% [23 of 234 patients] without a DLAD and 8% [20 of 234 patients] with a DLAD) (P = .13). Conclusion Using a deep learning-based automatic detection algorithm may help observers reduce the number of overlooked lung cancers on chest radiographs, without a proportional increase in the number of follow-up chest CT examinations. © RSNA, 2020 Online supplemental material is available for this article.