Radiology
-
To apply resting-state functional magnetic resonance (MR) imaging to map functional connectivity of the human spinal cord. ⋯ Resting-state functional MR imaging of the human cervical spinal cord with a 3.0-T clinical MR imaging unit and standard MR imaging protocols and hardware reveals prominent functional connectivity patterns within the spinal cord gray matter, consistent with known functional and anatomic layouts of the spinal cord.
-
To describe the initial neuroradiology findings in a cohort of military service members with primarily chronic mild traumatic brain injury (TBI) from blast by using an integrated magnetic resonance (MR) imaging protocol. ⋯ Blast-related injury and loss of consciousness is common in military TBI. Structural MR imaging demonstrates a high incidence of white matter T2-weighted hyperintense areas and pituitary abnormalities, with a low incidence of microhemorrhage in the chronic phase.
-
Multicenter Study
Fast and Noninvasive Characterization of Suspicious Lesions Detected at Breast Cancer X-Ray Screening: Capability of Diffusion-weighted MR Imaging with MIPs.
To evaluate the ability of a diagnostic abbreviated magnetic resonance (MR) imaging protocol consisting of maximum intensity projections (MIPs) from diffusion-weighted imaging with background suppression (DWIBS) and unenhanced morphologic sequences to help predict the likelihood of malignancy on suspicious screening x-ray mammograms, as compared with an abbreviated contrast material-enhanced MR imaging protocol and a full diagnostic breast MR imaging protocol. ⋯ Unenhanced diagnostic MR imaging (DWIBS mammography), with an NPV of 0.92 and an acquisition time of less than 7 minutes, could help exclude malignancy in women with suspicious x-ray screening mammograms. The method has the potential to reduce unnecessary invasive procedures and emotional distress for breast cancer screening participants if it is used as a complement after the regular screening clarification procedure.
-
To determine associations of metabolite levels derived from magnetic resonance (MR) spectroscopic imaging (ie, hydrogen 1 [(1)H] MR spectroscopic imaging) and apparent diffusion coefficients (ADCs) from diffusion-weighted imaging with prostate tissue composition assessed by digital image analysis of histologic sections. ⋯ The observed correlation of (Cit + Spm + Cr)/Cho ratio and ADC of the prostate with its tissue composition indicates that components of this composition, such as percentage luminal area, contribute to the value of these MR parameters.