Revista brasileira de anestesiologia
-
Malignant hyperthermia (MH) is a potentially lethal pharmacogenetic disorder that affects genetically predisposed individuals. It manifests in susceptible individuals in response to exposure to Inhalant anesthetics, depolarizing muscle relaxants or extreme physical activity in hot environments. During exposure to these triggering agents, there is a rapid and sustained increase of myoplasmic calcium (Ca(2+)) concentration induced by hyperactivation of ryanodine receptor of skeletal muscle (RyR1), causing a profound change in Ca(2+) homeostasis, featuring a hypermetabolic state. ⋯ Actually, the standard method for diagnosing MH susceptibility is the muscle contracture test for exposure to halothane-caffeine (CHCT) and the only treatment is the use of dantrolene. However, with advances in molecular genetics, a full understanding of the disease etiology may be provided, favoring the development of an accurate diagnosis, less invasive, with DNA test, and also will provide the development of new therapeutic strategies for treatment of MH. Thus, this brief review aims to integrate molecular and clinical aspects of MH, gathering input for a better understanding of this channelopathy.
-
Rev Bras Anestesiol · Nov 2012
Comparison of the effects of bupivacaine, lidocaine, and tramadol infiltration on wound healing in rats.
The aim of this study was to investigate the effects of saline solution, bupivacaine, lidocaine and tramadol infiltration on wound healing in rats. ⋯ In our study, we found bupivacaine and lidocaine reduced the collagen production, wound breaking strength, and caused significantly high scores for edema, vascularity, and inflammation when compared to the control group. There was no significant difference between the control and the tramadol group. Results of this experimental preliminary study on rats support the idea that tramadol can be used for wound infiltration anesthesia without adverse effect on the surgical healing process. These results need to be verified in humans.