Journal of diabetes science and technology
-
J Diabetes Sci Technol · Sep 2009
Multicenter Study Comparative StudyClosed-loop artificial pancreas using subcutaneous glucose sensing and insulin delivery and a model predictive control algorithm: preliminary studies in Padova and Montpellier.
New effort has been made to develop closed-loop glucose control, using subcutaneous (SC) glucose sensing and continuous subcutaneous insulin infusion (CSII) from a pump, and a control algorithm. An approach based on a model predictive control (MPC) algorithm has been utilized during closed-loop control in type 1 diabetes patients. Here we describe the preliminary clinical experience with this approach. ⋯ Also, in Montpellier, two patients out of three showed a better glucose control during closed-loop trials. Avoidance of nocturnal hypoglycemic excursions was a clear benefit during algorithm-guided insulin delivery in all cases. This preliminary set of studies demonstrates that closed-loop control based entirely on SC glucose sensing and insulin delivery is feasible and can be applied to improve glucose control in patients with type 1 diabetes, although the algorithm needs to be further improved to achieve better glycemic control.
-
J Diabetes Sci Technol · Sep 2009
Overnight closed-loop insulin delivery with model predictive control: assessment of hypoglycemia and hyperglycemia risk using simulation studies.
Hypoglycemia and hyperglycemia during closed-loop insulin delivery based on subcutaneous (SC) glucose sensing may arise due to (1) overdosing and underdosing of insulin by control algorithm and (2) difference between plasma glucose (PG) and sensor glucose, which may be transient (kinetics origin and sensor artifacts) or persistent (calibration error [CE]). Using in silico testing, we assessed hypoglycemia and hyperglycemia incidence during over-night closed loop. Additionally, a comparison was made against incidence observed experimentally during open-loop single-night in-clinic studies in young people with type 1 diabetes mellitus (T1DM) treated by continuous SC insulin infusion. ⋯ The incidence of severe and significant hypoglycemia reduced 2300- and 200-fold, respectively, during stimulated overnight closed loop with MPC compared to that observed during open-loop overnight clinical studies in young subjects with T1DM. Hyperglycemia was 200 times less likely. Overnight closed loop with the FSN and the MPC algorithm is expected to reduce substantially the risk of hypoglycemia and hyperglycemia.
-
J Diabetes Sci Technol · Jul 2009
ReviewGlucose meters: a review of technical challenges to obtaining accurate results.
Glucose meters are universally utilized in the management of hypoglycemic and hyperglycemic disorders in a variety of healthcare settings. Establishing the accuracy of glucose meters, however, is challenging. Glucose meters can only analyze whole blood, and glucose is unstable in whole blood. ⋯ Acceptance criteria for clinical agreement vary across the range of glucose concentrations and depend on how the result will be used in screening or management of the patient. A variety of factors can affect glucose meter results, including operator technique, environmental exposure, and patient factors, such as medication, oxygen therapy, anemia, hypotension, and other disease states. This article reviews the challenges involved in obtaining accurate glucose meter results.
-
J Diabetes Sci Technol · Jul 2009
ReviewExercise and glucose metabolism in persons with diabetes mellitus: perspectives on the role for continuous glucose monitoring.
Exercise causes profound changes in glucose homeostasis. For people with type 1 diabetes, aerobic exercise usually causes blood glucose concentration to drop rapidly, while anaerobic exercise may cause it to rise, thereby making glycemic control challenging. ⋯ Continuous glucose monitoring is a potentially useful adjunct to diabetes management for the active person with either forms of diabetes. This review aims to guide the reader to use this technology to its maximum advantage by providing an overview of technical features, performance characteristics, and clinical utility, all balanced against the limitations that may be more prominent during physical activity.
-
J Diabetes Sci Technol · Jul 2009
Intermediary variables and algorithm parameters for an electronic algorithm for intravenous insulin infusion.
Algorithms for intravenous insulin infusion may assign the infusion rate (IR) by a two-step process. First, the previous insulin infusion rate (IR(previous)) and the rate of change of blood glucose (BG) from the previous iteration of the algorithm are used to estimate the maintenance rate (MR) of insulin infusion. Second, the insulin IR for the next iteration (IR(next)) is assigned to be commensurate with the MR and the distance of the current blood glucose (BG(current)) from target. With use of a specific set of algorithm parameter values, a family of iso-MR curves is created, each giving IR as a function of MR and BG. ⋯ An algorithm is described that estimates MR prior to the attainment of euglycemia and computes MR-dependent values for IR(next). Design features address glycemic variability, promote safety with respect to hypoglycemia, and define a method for specifying glycemic targets that are allowed to differ according to patient condition.