Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2014
Investigation of photoplethysmography and near infrared spectroscopy for the assessment of tissue blood perfusion.
Pulse Oximetry (PO) and Near Infrared Spectroscopy (NIRS) are among the most widely adopted optical techniques for the assessment of tissue perfusion. PO estimates arterial oxygen saturation (SpO2) by exploiting light attenuations due to pulsatile arterial blood (AC) and constant absorbers (DC) at two different wavelengths. NIRS processes the attenuations of at least two wavelengths to calculate concentrations of Deoxygenated ([HHb]), Oxygenated ([HbO2]), Total Haemoglobin ([tHb]) and Tissue Oxygenation Index (TOI). ⋯ The system adopts both Pulse Oximetry and NIRS principles to calculate SpO2, [HHb], and [HbO2] and [tHb]. The system has been evaluated on the forearm of 10 healthy volunteers during cuff-induced vascular occlusions. The presented system was able to estimate SpO2, [HHb], [HbO2] and [tHb], showing good agreement with state-of-the-art NIRS and conventional PO.
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2014
Rapid and low-invasive functional brain mapping by realtime visualization of high gamma activity for awake craniotomy.
For neurosurgery with an awake craniotomy, the critical issue is to set aside enough time to identify eloquent cortices by electrocortical stimulation (ECS). High gamma activity (HGA) ranging between 80 and 120 Hz on electrocorticogram (ECoG) is assumed to reflect localized cortical processing. In this report, we used realtime HGA mapping and functional magnetic resonance imaging (fMRI) for rapid and reliable identification of motor and language functions. ⋯ Specificities of the motor and language-fMRI, however, did not reach 85%. The results of HGA mapping was mostly consistent with those of ECS mapping, although fMRI tended to overestimate functional areas. This novel technique enables rapid and accurate functional mapping.
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2014
Assessing the privacy policies in mobile personal health records.
The huge increase in the number and use of smartphones and tablets has led health service providers to take an interest in mHealth. Popular mobile app markets like Apple App Store or Google Play contain thousands of health applications. Although mobile personal health records (mPHRs) have a number of benefits, important challenges appear in the form of adoption barriers. ⋯ The results show important differences in both the mPHRs and the characteristics analyzed. A questionnaire containing six questions concerning privacy policies was defined. Our questionnaire may assist developers and stakeholders to evaluate the security and privacy of their mPHRs.
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2014
A unified machine learning method for task-related and resting state fMRI data analysis.
Functional magnetic resonance imaging (fMRI) aims to localize task-related brain activation or resting-state functional connectivity. Most existing fMRI data analysis techniques rely on fixed thresholds to identify active voxels under a task condition or functionally connected voxels in the resting state. Due to fMRI non-stationarity, a fixed threshold cannot adapt to intra- and inter-subject variation and provide a reliable mapping of brain function. ⋯ The method does not require a fixed threshold for the final decision, and can adapt to fMRI non-stationarity. The proposed method was evaluated using experimental data acquired from multiple human subjects. The results indicate that the proposed method can provide reliable mapping of brain function, and is applicable to various quantitative fMRI studies.
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2014
Multicenter StudyWELCOME – innovative integrated care platform using wearable sensing and smart cloud computing for COPD patients with comorbidities.
We propose WELCOME, an innovative integrated care platform using wearable sensors and smart cloud computing for Chronic Obstructive Pulmonary Disease (COPD) patients with co-morbidities. WELCOME aims to bring about a change in the reactive nature of the management of chronic diseases and its comorbidities, in particular through the development of a patient centred and proactive approach to COPD management. The aim of WELCOME is to support healthcare services to give early detection of complications (potentially reducing hospitalisations) and the prevention and mitigation of comorbidities (Heart Failure, Diabetes, Anxiety and Depression). ⋯ Informal carers will also be supported in dealing with their patients. On the other hand, welcome smart cloud platform is the heart of the proposed system where all the medical records and the monitoring data are managed and processed via the decision support system. Healthcare professionals will be able to securely access the WELCOME applications to monitor and manage the patient's conditions and respond to alerts on personalized level.