Conference proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2015
An improved artifact removal algorithm for continuous cardiac output and blood pressure recordings.
Measurement artifacts are common in hemodynamic recordings such as cardiac output and blood pressure. Manual artifact removal is cumbersome for large datasets, and automatic processing using algorithms may reduce workload and provide more reproducible outcomes. This paper presents an artifact removal algorithm which is more aggressive compared to a previously described method. ⋯ Precision, recall and F-score was determined by agreement with manual inspection by an expert. Based on the total of all measurements from CO and MAP by LiDCO and CO and MAP by Nexfin, precision was 86%, 79%, 79% and 68% respectively (87%, 62%, 76% and 58% for the reference method), recall was 97%, 94%, 89% and 97% (31%, 6%, 28% and 6% for reference), F-score was 91%, 85%, 84% and 80% (46%, 10%, 41% and 10% for reference). The proposed algorithm offers an improved performance in removing true artifacts, in some cases a reduced ability to preserve true measurements, but an improved overall accuracy.
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2015
Estimating instantaneous respiratory rate from the photoplethysmogram.
The photoplethysmogram (PPG) obtained from pulse oximetry shows the local changes of blood volume in tissues. Respiration induces variation in the PPG baseline due to the variation in venous blood return during each breathing cycle. We have proposed an algorithm based on the synchrosqueezing transform (SST) to estimate instantaneous respiratory rate (IRR) from the PPG. ⋯ The median RMS error was 0.39 breaths/min for all subjects which ranged from the lowest error of 0.18 breaths/min to the highest error of 13.86 breaths/min. A Bland-Altman plot showed an agreement between the IRR obtained from PPG and reference respiratory rate with a bias of -0.32 and limits agreement of -7.72 to 7.07. Extracting IRR from PPG expands the functionality of pulse oximeters and provides additional diagnostic power to this non-invasive monitoring tool.
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2015
Estimation of physiological sub-millimeter displacement with CW Doppler radar.
Doppler radar physiological sensing has been studied for non-contact detection of vital signs including respiratory and heartbeat rates. This paper presents the first micrometer resolution Wi-Fi band Doppler radar for sub-millimeter physiological displacement measurement. A continuous-wave Doppler radar working at 2.4GHz is used for the measurement. ⋯ A mechanical mover was used as target, and programmed to conduct sinusoidal motions to simulate pulse motions. Measured displacements were compared with a reference system, which indicates a superior performance in accuracy for having absolute errors less than 10μm, and relative errors below 4%. It indicates the feasibility of highly accurate non-contact monitoring of physiological movements using Doppler radar.
-
Conf Proc IEEE Eng Med Biol Soc · Jan 2015
A high-accuracy surgical augmented reality system using enhanced integral videography image overlay.
Image guided surgery has been used in clinic to improve the surgery safety and accuracy. Augmented reality (AR) technique, which can provide intuitive image guidance, has been greatly evolved these years. As one promising approach of surgical AR systems, integral videography (IV) autostereoscopic image overlay has achieved accurate fusion of full parallax guidance into surgical scene. ⋯ Preliminary experiments validated that the image accuracy and resolution are improved with the proposed methods. The resolution of the IV image could be promoted to 1 mm for a micro lens array with pitch of 2.32 mm and IES magnification value of 0.5. The relative deviation of accuracy in depth and lateral directions are -4.68 ± 0.83% and -9.01 ± 0.42%.
-
Catheters and flexible endoscopes are usually steered by mechanical wires that are driven from their base. Due to friction and buckling there is a need to place the driving actuator of the catheter at the catheter's tip. Such active catheter's manoeuvrability is much higher than wire-driven ones. ⋯ The magnitude of the bending torque of our actuator is created by internal hydraulic pressure in the tube and the steering direction is controlled by the thermal micro-actuator embedded in the wall of the tube. In this paper we present the modelling, optimization, design and testing of an initial prototype of such an actuator. We found that a 4 mm OD actuator made of TPU can bend to ±12°.