The Journal of nutrition
-
The Journal of nutrition · Jun 2011
Rutin attenuates metabolic changes, nonalcoholic steatohepatitis, and cardiovascular remodeling in high-carbohydrate, high-fat diet-fed rats.
Metabolic syndrome (obesity, diabetes, and hypertension) increases hepatic and cardiovascular damage. This study investigated preventive or reversal responses to rutin in high-carbohydrate, high-fat diet-fed rats as a model of metabolic syndrome. Rats were divided into 6 groups: 2 groups were fed a corn starch-rich diet for 8 or 16 wk, 2 groups were fed a high-carbohydrate, high-fat diet for 8 or 16 wk, and 2 groups received rutin (1.6 g/kg diet) in either diet for the last 8 wk only of the 16-wk protocol. ⋯ The high-carbohydrate, high-fat diet produced obesity, dyslipidemia, hypertension, impaired glucose tolerance, hepatic steatosis, infiltration of inflammatory cells in the liver and the heart, higher cardiac stiffness, endothelial dysfunction, and higher plasma markers of oxidative stress with lower expression of markers for oxidative stress and apoptosis in the liver. Rutin reversed or prevented metabolic changes such as abdominal fat pads and glucose tolerance, reversed or prevented changes in hepatic and cardiovascular structure and function, reversed oxidative stress and inflammation in the liver and heart, and normalized expression of liver markers. These results suggest a non-nutritive role for rutin to attenuate chronic changes in metabolic syndrome.
-
The Journal of nutrition · Feb 2011
Randomized Controlled TrialDry cereals fortified with electrolytic iron or ferrous fumarate are equally effective in breast-fed infants.
Precooked, instant (dry) infant cereals in the US are fortified with electrolytic iron, a source of low reactivity and suspected low bioavailability. Iron from ferrous fumarate is presumed to be more available. In this study, we compared a dry infant rice cereal (Cereal L) fortified with electrolytic iron (54.5 mg iron/100 g cereal) to a similar cereal (Cereal M) fortified with ferrous fumarate (52.2 mg Fe/100 g) for efficacy in maintaining iron status and preventing iron deficiency (ID) in breast-fed infants. ⋯ Iron intake from the study cereals was (mean ± SD) 1.21 ± 0.31 mg⋅kg(-1)⋅d(-1) from Cereal L and 1.07 ± 0.40 mg⋅kg(-1)⋅d(-1) from Cereal M. Eleven infants had low birth iron endowment (plasma ferritin < 55 μg/L at 2 mo) and 54% of these infants had ID with or without anemia by 4 mo. We conclude that electrolytic iron and ferrous fumarate were equally efficacious as fortificants of this infant cereal.
-
The Journal of nutrition · Feb 2011
Controlled Clinical TrialEarly docosahexaenoic acid supplementation of mothers during lactation leads to high plasma concentrations in very preterm infants.
Very preterm infants are vulnerable to deficiency in DHA. In a longitudinal study, 10 mothers who delivered ≤29 wk gestation and planned to breast-feed received DHA (1200 mg/d) until 36 wk after conception. The plasma DHA status was assessed in their 12 infants (including 2 pairs of twins) from birth to d 49. ⋯ The amount of DHA provided to the infants increased from wk 1 through wk 7 in the DHA group (P < 0.001). Although enteral intake at wk 7 did not differ between the DHA group [119 ± 51 mL/(kg·d)] and the reference group [113 ± 66 mL/(kg·d)], DHA group infants received 55 ± 38 mg/(kg·d) of DHA, and the reference group infants received 7 ± 11 mg/(kg·d) (P < 0.001). Early supplementation with DHA to lactating mothers with low dietary DHA intake successfully increased the plasma DHA status in very preterm infants.
-
The Journal of nutrition · Jan 2011
ReviewThe effect of eating frequency on appetite control and food intake: brief synopsis of controlled feeding studies.
Increased eating frequency is postulated to increase metabolism, reduce hunger, improve glucose and insulin control, and reduce body weight, making it an enticing dietary strategy for weight loss and/or the maintenance of a healthy body weight. Because past research has primarily focused on the effects of eating frequency on changes in energy expenditure and body weight, limited data exist surrounding the impact of eating frequency on appetite control and energy intake. We provide a brief review of the controlled-feeding studies that primarily targeted the appetitive, hormonal, and food intake responses potentially altered with eating frequency. ⋯ Subsequent food intake was examined in several studies with conflicting results. Regarding the effect of reduced eating frequency, several studies indicate significant increases in perceived appetite and reductions in perceived satiety when 1 or 2 meals were eliminated from the daily diet. Taken together, these findings suggest that increased eating frequency (>3 eating occasions/d) has minimal, if any, impact on appetite control and food intake, whereas reduced eating frequency(<3 eating occasions/d) negatively effects appetite control.
-
The Journal of nutrition · Dec 2010
Randomized Controlled TrialPlasma zinc concentration responds rapidly to the initiation and discontinuation of short-term zinc supplementation in healthy men.
To assist with the evaluation of zinc (Zn) intervention programs, information is needed on the magnitude and velocity of response of plasma Zn concentration following changes in Zn intake. Our objective in this study was to measure plasma Zn concentration of healthy adult men before and after initiation and discontinuation of 1 of 2 dosages of Zn supplements or placebo. We conducted a randomized, double-blind, placebo-controlled trial in 58 apparently healthy males aged 19-54 y. ⋯ Plasma Zn concentrations of supplemented individuals declined following withdrawal of supplementation and within 2 wk no longer differed from those of the placebo group. Change in the plasma Zn concentration is a useful indicator to monitor compliance with, and possibly effectiveness of, Zn supplementation programs. To ensure accurate interpretation of the results, samples should be collected while the intervention is still in progress.