Scientific reports
-
Randomized Controlled Trial
Assessment of the effects of sugammadex on coagulation profiles using thromboelastographic parameters.
This study evaluated the effects of sugammadex at conventional doses of 2 and 4 mg/kg on the coagulation profile by analyzing thromboelastographic parameters and performing a traditional laboratory coagulation analysis. A total of 100 patients undergoing arthroscopic shoulder surgery were enrolled. The patients were randomly divided into the 2 mg and 4 mg groups. ⋯ Sugammadex 4 mg/kg also prolonged R time, although the value was within the normal range. Therefore, physicians should be cautious with the higher sugammadex dose, particularly in patients with a high risk of bleeding because the higher dose was associated with less coagulation. Trial registration: KCT0002133 (https://cris.nih.go.kr).
-
Lesion network mapping (LNM) has been applied to true lesions (e.g., cerebrovascular lesions in stroke) to identify functionally connected brain networks. No previous studies have utilized LNM for analysis of intra-axial mass lesions. Here, we implemented LNM for identification of potentially vulnerable epileptogenic networks in mass lesions causing medically-refractory epilepsy (MRE). ⋯ In this proof of concept study, we demonstrate the feasibility of LNM for intra-axial mass lesions by showing that ELs have discrete functional connections and may preferentially engage in discrete resting-state networks. Thus, the underlying normative neural circuitry may, in part, explain the propensity of particular lesions toward the development of MRE. If prospectively validated, this has ramifications for patient counseling along with both approach and timing of surgery for lesions in locations prone to development of MRE.
-
In the past two decades, 7 coronaviruses have infected the human population, with two major outbreaks caused by SARS-CoV and MERS-CoV in the year 2002 and 2012, respectively. Currently, the entire world is facing a pandemic of another coronavirus, SARS-CoV-2, with a high fatality rate. The spike glycoprotein of SARS-CoV-2 mediates entry of virus into the host cell and is one of the most important antigenic determinants, making it a potential candidate for a vaccine. ⋯ The in silico cloning and codon optimization supported the proficient expression of the designed vaccine in E. coli expression system. The efficiency of the candidate vaccine to trigger an effective immune response was assessed by an in silico immune simulation. The computational analyses suggest that the designed multi-epitope vaccine is structurally stable which can induce specific immune responses and thus, can be a potential vaccine candidate against SARS-CoV-2.
-
The novel coronavirus SARS-CoV-2 and resulting COVID-19 disease have had an unprecedented spread and continue to cause an increasing number of fatalities worldwide. While vaccines are still under development, social distancing, extensive testing, and quarantining of confirmed infected subjects remain the most effective measures to contain the pandemic. These measures carry a significant socioeconomic cost. ⋯ This includes modeling the dynamics of affected populations, estimating the model parameters and hidden states from data, and an optimal control strategy for sequencing social distancing and testing events such that the number of infections is minimized. The analysis of our extensive computational efforts reveals that social distancing and quarantining are most effective when implemented early, with quarantining of confirmed infected subjects having a much higher impact. Further, we find that "on-off" policies alternating between strict social distancing and relaxing such restrictions can be effective at "flattening" the curve while likely minimizing social and economic cost.