Scientific reports
-
Mid Regional pro-ADM (MR-proADM) is a promising novel biomarker in the evaluation of deteriorating patients and an emergent prognosis factor in patients with sepsis, septic shock and organ failure. It can be induced by bacteria, fungi or viruses. We hypothesized that the assessment of MR-proADM, with or without other inflammatory cytokines, as part of a clinical assessment of COVID-19 patients at hospital admission, may assist in identifying those likely to develop severe disease. ⋯ This study shows an association between MR-proADM levels and the severity of COVID-19. The assessment of MR-proADM combined with clinical scoring systems could be of great value in triaging, evaluating possible escalation of therapies, and admission avoidance or inclusion into trials. Larger prospective and controlled studies are needed to confirm these findings.
-
One major bottleneck in the ongoing COVID-19 pandemic is the limited number of critical care beds. Due to the dynamic development of infections and the time lag between when patients are infected and when a proportion of them enters an intensive care unit (ICU), the need for future intensive care can easily be underestimated. To infer future ICU load from reported infections, we suggest a simple statistical model that (1) accounts for time lags and (2) allows for making predictions depending on different future growth of infections. ⋯ By keeping the growth rates flexible, this model allows for taking into account the potential effect of diverse containment measures. Thus, the model can help to predict a potential exceedance of ICU capacity depending on future growth. A sensitivity analysis for an extended time period shows that the proposed model is particularly useful for exponential phases of the disease.
-
Clinical Trial Observational Study
Evaluation of myocardial injury patterns and ST changes among critical and non-critical patients with coronavirus-19 disease.
Novel coronavirus disease (COVID-19) has led to a major public health crisis globally. Currently, myocardial damage is speculated to be associated with COVID-19, which can be seen as one of the main causes of death of patients with COVID-19. We therefore, aim to investigate the effects of COVID-19 disease on myocardial injury in hospitalized patients who have been tested positive for COVID-19 pneumonia in this study. ⋯ Results analyzed by a logistic regression model showing COVID-19 direct contribution to myocardial injury in these patients. COVID-19 disease directly leads to cardiovascular damage among critical and non-critical patients. Myocardial injury is associated not only with abnormal ECG changes but also with myocardial dysfunction on echocardiography and more commonly observed among critical patients.
-
Sacubitril/valsartan is a combined neprilysin inhibitor/angiotensin II receptor blocker designed for treatment of heart failure (HF). Nonetheless, its renal protective effect remained an issue of debate. This retrospective cohort study investigated the renal protective effect of sacubitril/valsartan in HF patients. ⋯ Multivariate Cox regression model showed that sacubitril/valsartan group had significantly reduced risk for renal function decline (hazard ratio: 0.5, 95% confidence interval: 0.3-0.9). Kaplan-Meier curve showed no difference in the risk for cardiovascular mortality, all-cause mortality or HF-related hospitalization. We showed renal protective effect of neprilysin inhibition in HF patients and specified that subgroups with LVEF ≥ 40% or eGFR ≥ 60 mL/min/1.73 m2 were sensitive to this effect, suggesting an optimal subgroup of this treatment.
-
Cardiac injury is a common complication of the coronavirus disease 2019 (COVID-19), and is associated with adverse clinical outcomes. In this study, we aimed to reveal the association of cardiac injury with coagulation dysfunction. We enrolled 181 consecutive patients who were hospitalized with COVID-19, and studied the clinical characteristics and outcome of these patients. ⋯ Cardiac injury is a common complication of COVID-19 and is an independent risk factor for in-hospital mortality. Old age, high leukocyte count, and high levels of AST, D-dimer and serum ferritin are significantly associated with cardiac injury, whereas IL6 are not. Therefore, the pathogenesis of cardiac injury in COVID-19 may be primarily due to coagulation dysfunction along with microvascular injury.