Frontiers in neurology
-
Frontiers in neurology · Jan 2014
UCH-L1 and GFAP Serum Levels in Neonates with Hypoxic-Ischemic Encephalopathy: A Single Center Pilot Study.
We examined two potential biomarkers of brain damage in hypoxic-ischemic encephalopathy (HIE) neonates: glial fibrillary acidic protein (GFAP; a marker of gliosis) and ubiquitin C-terminal hydrolase L1 (UCH-L1; a marker of neuronal injury). We hypothesized that the biomarkers would be measurable in cord blood of healthy neonates and could serve as a normative reference for brain injury in HIE infants. We further hypothesized that higher levels would be detected in serum samples of HIE neonates and would correlate with brain damage on magnetic resonance imaging (MRI) and later developmental outcomes.? ⋯ Ubiquitin C-terminal hydrolase L1 and GFAP should be explored further as promising serum biomarkers of brain damage and later neurodevelopmental outcomes in neonates with HIE.
-
Frontiers in neurology · Jan 2014
A modified controlled cortical impact technique to model mild traumatic brain injury mechanics in mice.
For the past 25 years, controlled cortical impact (CCI) has been a useful tool in traumatic brain injury (TBI) research, creating injury patterns that includes primary contusion, neuronal loss, and traumatic axonal damage. However, when CCI was first developed, very little was known on the underlying biomechanics of mild TBI. This paper uses information generated from recent computational models of mild TBI in humans to alter CCI and better reflect the biomechanical conditions of mild TBI. ⋯ Moreover, neuronal degeneration, axonal injury, and both astrocytic and microglia reactivity were observed up to 8 days after injury. Significant deficits in rotarod performance appeared early after injury, but we observed no impairment in spatial object recognition or contextual fear conditioning response 5 and 8 days after injury, respectively. Together, these data show that simulating the biomechanical conditions of mild TBI with a modified cortical impact technique produces regions of cellular reactivity and neuronal loss that coincide with only a transient behavioral impairment.
-
Frontiers in neurology · Jan 2014
Brain tissue oxygenation and cerebral metabolic patterns in focal and diffuse traumatic brain injury.
Neurointensive care of traumatic brain injury (TBI) patients is currently based on intracranial pressure (ICP) and cerebral perfusion pressure (CPP) targeted protocols. There are reasons to believe that knowledge of brain tissue oxygenation (BtipO2) would add information with the potential of improving patient outcome. The aim of this study was to examine BtipO2 and cerebral metabolism using the Neurovent-PTO probe and cerebral microdialysis (MD) in TBI patients. ⋯ Monitoring of BtipO2 adds important information in addition to traditional ICP and CPP surveillance. Because of the different metabolic responses to very low BtipO2 in the individual patient groups we submit that brain tissue oximetry is a complementary tool rather than an alternative to MD monitoring.
-
Frontiers in neurology · Jan 2014
Small-world characteristics of EEG patterns in post-anoxic encephalopathy.
Post-anoxic encephalopathy (PAE) has a heterogenous outcome which is difficult to predict. At present, it is possible to predict poor outcome using somatosensory evoked potentials in only a minority of the patients at an early stage. In addition, it remains difficult to predict good outcome at an early stage. ⋯ Our data might implicate that non-survivors have insufficient distribution and differentiation of neural activity for regaining normal brain function. These network differences, already present during hypothermia, might be further developed as early prognostic markers. The predictive values are however still inferior to current practice parameters.
-
Frontiers in neurology · Jan 2014
Unstandardized treatment of electroencephalographic status epilepticus does not improve outcome of comatose patients after cardiac arrest.
Electroencephalographic status epilepticus occurs in 9-35% of comatose patients after cardiac arrest. Mortality is 90-100%. It is unclear whether (some) seizure patterns represent a condition in which anti-epileptic treatment may improve outcome, or severe ischemic damage, in which treatment is futile. We explored current treatment practice and its effect on patients' outcome. ⋯ In comatose patients after cardiac arrest complicated by electroencephalographic status epilepticus, current practice includes unstandardized, moderate treatment with anti-epileptic drugs. Although widely used, this does probably not improve patients' outcome. A randomized controlled trial to estimate the effect of standardized, aggressive treatment, directed at complete suppression of epileptiform activity during at least 24 h, is needed and in preparation.