Frontiers in physiology
-
Frontiers in physiology · Jan 2014
Cardiovascular consequence of reclining vs. sitting beach-chair body position for induction of anesthesia.
The sitting beach-chair position is regularly used for shoulder surgery and anesthesia may be induced in that position. We tested the hypothesis that the cardiovascular challenge induced by induction of anesthesia is attenuated if the patient is placed in a reclining beach-chair position. Anesthesia was induced with propofol in the sitting beach-chair (n = 15) or with the beach-chair tilted backwards to a reclining beach-chair position (n = 15). ⋯ Continuous hemodynamic variables were recorded by photoplethysmography and frontal cerebral oxygenation (ScO2) by near infrared spectroscopy. Significant differences were only observed immediately after the induction when patients induced in a reclining beach-chair position had higher mean arterial pressure (MAP) (35 ± 12 vs. 45 ± 15 % reduction from baseline, p = 0.04) and ScO2 (7 ± 6 vs. 1 ± 8% increase from baseline, p = 0.02) and received less ephedrine (mean: 4 vs. 13 mg, p = 0.048). The higher blood pressure and lower need of vasopressor following induction of anesthesia in the reclining compared to the sitting beach-chair position indicate more stable hemodynamics with the clinical implication that anesthesia should not be induced with the patient in the sitting position.
-
Frontiers in physiology · Jan 2014
Resting sympathetic baroreflex sensitivity in subjects with low and high tolerance to central hypovolemia induced by lower body negative pressure.
Central hypovolemia elicited by orthostasis or hemorrhage triggers sympathetically-mediated baroreflex responses to maintain organ perfusion; these reflexes are less sensitive in patients with orthostatic intolerance, and during conditions of severe blood loss, may result in cardiovascular collapse (decompensatory or circulatory shock). The ability to tolerate central hypovolemia is variable and physiological factors contributing to tolerance are emerging. We tested the hypothesis that resting muscle sympathetic nerve activity (MSNA) and sympathetic baroreflex sensitivity (BRS) are attenuated in male and female subjects who have low tolerance (LT) to central hypovolemia induced by lower body negative pressure (LBNP). ⋯ BRS was assessed as the slope of the relationship between spontaneous fluctuations in DAP and MSNA during 5 min of supine rest. MSNA burst incidence/DAP correlations were greater than or equal to 0.5 in 37 subjects (LT: n = 9; HT: n = 28), and BRS was not different between LT and HT (-1.8 ± 0.3 vs. -2.2 ± 0.2 bursts·(100 beats)(-1) ·mm Hg(-1), p = 0.29). We conclude that tolerance to central hypovolemia is not related to either resting MSNA or sympathetic BRS.
-
Frontiers in physiology · Jan 2014
Ventilatory strategy during liver transplantation: implications for near-infrared spectroscopy-determined frontal lobe oxygenation.
As measured by near infrared spectroscopy (NIRS), cerebral oxygenation (ScO2) may be reduced by hyperventilation in the anhepatic phase of liver transplantation surgery (LTx). Conversely, the brain may be subjected to hyperperfusion during reperfusion of the grafted liver. We investigated the relationship between ScO2 and end-tidal CO2 tension (EtCO2) during the various phases of LTx. ⋯ During LTx, changes in ScO2 are closely correlated to those of EtCO2. Thus, this retrospective analysis suggests that attention to maintain a targeted EtCO2 would result in a more stable ScO2 during the operation.
-
Frontiers in physiology · Jan 2014
Arterial pressure variations as parameters of brain perfusion in response to central blood volume depletion and repletion.
A critical reduction in central blood volume (CBV) is often characterized by hemodynamic instability. Restoration of a volume deficit may be established by goal-directed fluid therapy guided by respiration-related variation in systolic- and pulse pressure (SPV and PPV). Stroke volume index (SVI) serves as a surrogate end-point of a fluid challenge but tissue perfusion itself has not been addressed. ⋯ In spontaneously breathing subjects, a reduction in MCAVmean was related to an increase in PPV and SPV during graded CBV depletion and repletion. Specifically, PPV and SPV predicted changes in both SVI and MCAVmean with comparable sensitivity and specificity, however the predictive value is limited in spontaneously breathing subjects.
-
Frontiers in physiology · Jan 2014
O2 supplementation to secure the near-infrared spectroscopy determined brain and muscle oxygenation in vascular surgical patients: a presentation of 100 cases.
This study addresses three questions for securing tissue oxygenation in brain (rScO2) and muscle (SmO2) for 100 patients (age 71 ± 6 years; mean ± SD) undergoing vascular surgery: (i) Does preoxygenation (inhaling 100% oxygen before anesthesia) increase tissue oxygenation, (ii) Does inhalation of 70% oxygen during surgery prevent a critical reduction in rScO2 (<50%), and (iii) is a decrease in rScO2 and/or SmO2 related to reduced blood pressure and/or cardiac output?Intravenous anesthesia was provided to all patients and the intraoperative inspired oxygen fraction was set to 0.70 while tissue oxygenation was determined by INVOS 5100C. Preoxygenation increased rScO2 (from 65 ± 8 to 72 ± 9%; P < 0.05) and SmO2 (from 75 ± 9 to 78 ± 9%; P < 0.05) and during surgery rScO2 and SmO2 were maintained at the baseline level in most patients. Following anesthesia and tracheal intubation an eventual change in rScO2 correlated to cardiac output and cardiac stroke volume (coefficient of contingence = 0.36; P = 0.0003) rather to a change in mean arterial pressure and for five patients rScO2 was reduced to below 50%. We conclude that (i) increased oxygen delivery enhances tissue oxygenation, (ii) oxygen supports tissue oxygenation but does not prevent a critical reduction in cerebral oxygenation sufficiently, and (iii) an eventual decrease in tissue oxygenation seems related to a reduction in cardiac output rather than to hypotension.