Journal of visualized experiments : JoVE
-
Trigeminal neuralgia is a disorder associated with severe episodes of lancinating pain in the distribution of the trigeminal nerve. Previous reports indicate that 80-90% of cases are related to compression of the trigeminal nerve by an adjacent vessel. The majority of patients with trigeminal neuralgia eventually require surgical management in order to achieve remission of symptoms. ⋯ Moreover, 41 of 66 patients (approximately 64%) have been entirely pain-free following the operation. In this publication, video format is utilized to review the microsurgical pathology of this disorder. Steps of the operative procedure are reviewed and salient principles and technical nuances useful in minimizing complications and maximizing efficacy are discussed.
-
During pre-synaptic embryonic development, neuronal processes traverse short distances to reach their targets via growth cone. Over time, neuronal somata are separated from their axon terminals due to skeletal growth of the enlarging organism (Weiss 1941; Gray, Hukkanen et al. 1992). This mechanotransduction induces a secondary mode of neuronal growth capable of accommodating continual elongation of the axon (Bray 1984; Heidemann and Buxbaum 1994; Heidemann, Lamoureux et al. 1995; Pfister, Iwata et al. 2004). ⋯ Previous work has shown that ASG of embryonic rat dorsal root ganglia neurons are capable of unprecedented growth rates up to 10mm/day, reaching lengths of up to 10 cm; while concurrently resulting in increased axonal diameters (Smith, Wolf et al. 2001; Pfister, Iwata et al. 2004; Pfister, Bonislawski et al. 2006; Pfister, Iwata et al. 2006; Smith 2009). This is in dramatic contrast to regenerative growth cone extension (in absence of mechanical stimuli) where growth rates average 1mm/day with successful regeneration limited to lengths of less than 3 cm (Fu and Gordon 1997; Pfister, Gordon et al. 2011). Accordingly, further study of ASG may help to reveal dysregulated growth mechanisms that limit regeneration in the absence of mechanical stimuli.
-
Detection of immune cells in the injured central nervous system (CNS) using morphological or histological techniques has not always provided true quantitative analysis of cellular inflammation. Flow cytometry is a quick alternative method to quantify immune cells in the injured brain or spinal cord tissue. Historically, flow cytometry has been used to quantify immune cells collected from blood or dissociated spleen or thymus, and only a few studies have attempted to quantify immune cells in the injured spinal cord by flow cytometry using fresh dissociated cord tissue. ⋯ As described in our recent study (Beck & Nguyen et al., Brain. 2010 Feb; 133 (Pt 2): 433-47), the OptiPrep cell preparation had increased sensitivity to detect cellular inflammation in the injured spinal cord, with counts of specific cell types correlating with injury severity. Critically, novel usage of this method provided the first characterization of acute and chronic cellular inflammation after SCI to include a complete time course for polymorphonuclear leukocytes (PMNs, neutrophils), macrophages/microglia, and T-cells over a period ranging from 2 hours to 180 days post-injury (dpi), identifying a surprising novel second phase of cellular inflammation. Thorough characterization of cellular inflammation using this method may provide a better understanding of neuroinflammation in the injured CNS, and reveal an important multiphasic component of neuroinflammation that may be critical for the design and implementation of rational therapeutic treatment strategies, including both cell-based and pharmacological interventions for SCI.
-
Murine models are extensively used to investigate acute injuries of different organs systems. Acute lung injury (ALI), which occurs with prolonged mechanical ventilation, contributes to morbidity and mortality of critical illness, and studies on novel genetic or pharmacological targets are areas of intense investigation. ALI is defined by the acute onset of the disease, which leads to non-cardiac pulmonary edema and subsequent impairment of pulmonary gas exchange. ⋯ As outcome parameters, pulmonary edema (wet-to-dry ratio), bronchoalveolar fluid albumin content, bronchoalveolar fluid and pulmonary tissue myeloperoxidase content and pulmonary gas exchange are assessed. Using this technique we could show that it sufficiently induces acute lung inflammation and can distinguish between different treatment groups or genotypes. Therefore this technique may be helpful for researchers who pursue molecular mechanisms involved in ALI using a genetic approach in mice with gene-targeted deletion.