The Journal of comparative neurology
-
Extracellular matrix molecules accumulate around central nervous system neurons during postnatal development, forming so-called perineuronal nets (PNNs). PNNs play a role in restricting plasticity at the end of critical periods. In the adult rat cerebellum, PNNs are found around large, deep cerebellar nuclei (DCN) neurons and Golgi neurons and are composed of chondroitin sulfate proteoglycans (CSPGs), tenascin-R (TN-R), hyaluronan (HA), and link proteins, such as cartilage link protein 1 (Crtll). ⋯ However, Crtll is the only PNN component to be expressed exclusively in neurons surrounded by PNNs. The other link protein that shows a perineuronal net pattern in the DCN, Bral2, is upregulated later during development. These data suggest that aggrecan, HA, and, particularly, Crtll might be crucial elements for the initial assembly of PNNs.
-
The basolateral amygdala contains several subpopulations of inhibitory interneurons that can be distinguished on the basis of their content of calcium-binding proteins or peptides. Although previous studies have shown that interneuronal subpopulations containing parvalbumin (PV) or vasoactive intestinal peptide (VIP) innervate distinct postsynaptic domains of pyramidal cells as well as other interneurons, very little is known about the synaptic outputs of the interneuronal subpopulation that expresses somatostatin (SOM). The present study utilized dual-labeling immunocytochemical techniques at the light and electron microscopic levels to analyze the innervation of pyramidal cells, PV+ interneurons, and VIP+ interneurons in the anterior basolateral amygdalar nucleus (BLa) by SOM+ axon terminals. ⋯ Likewise, only 15% of SOM+ terminals formed synapses with PV+, VIP+, or SOM+ interneurons. These findings suggest that inhibitory inputs from SOM+ interneurons may interact with excitatory inputs to pyramidal cell distal dendrites in the BLa. These interactions might affect synaptic plasticity related to emotional learning.
-
Numerous physiological conditions and emotionally motivated behaviors require concomitant activation of somatomotor and sympathetic efferents. Using a virally mediated retrograde transsynaptic tract-tracing approach, we have previously determined locations of presympathetic-premotor neurons (PSPMNs) in the rat brainstem. These putative dual-function neurons send projections to somatomotor and sympathetic targets and likely participate in sympatho-somatomotor integration. ⋯ Just over half of them are found at the pontomedullary junction within raphe obscurus, raphe magnus, and gigantocellular nucleus pars alpha. These cells may play a role in mediating responses to acute pain stimuli and/or participate in the central control of exercise. Overactivity of these serotonergic sympatho-somatomotor circuits may also play a role in the pathophysiology of serotonin syndrome.
-
Bone morphogenetic protein-4 (BMP4) is a member of the transforming growth factor-beta (TGF-beta) superfamily and plays important roles in multiple biological events. Although BMP4 expression has been well described in the early development of the central nervous system (CNS), little information is available on its expression in the adult CNS. Therefore, we investigated BMP4 expression in the adult rat CNS by using immunohistochemistry. ⋯ In addition, intense BMP4 expression was also observed in the neuropil of the gray matters where high plasticity is reported, such as the molecular layer of the cerebellum and the superficial layer of the superior colliculus. Furthermore, we found that astrocytes also express BMP4 protein. These data indicate that BMP4 is more widely expressed throughout the adult CNS than previously reported, and its continued abundant expression in the adult brain strongly supports the idea that BMP4 plays pivotal roles also in the adult brain.
-
The 29/30 amino acid neuropeptide galanin has been implicated in pain processing at the spinal level and local dorsal horn neurons expressing the Gal(1) receptor may play a critical role. In order to determine the transmitter identity of these neurons, we used immunohistochemistry and antibodies against the Gal(1) receptor and the three vesicular glutamate transporters (VGLUTs), as well as in situ hybridization, to explore a possible glutamatergic phenotype. Gal(1) protein, which could not be demonstrated in Gal(1) knockout mice, colocalized with VGLUT2 protein, but not with glutamate decarboxylase, in many nerve endings in lamina II. ⋯ Gal(1) staining did not appear to be affected by dorsal rhizotomy. Taken together, these findings provide strong evidence that Gal(1) is a heteroreceptor expressed on excitatory glutamatergic dorsal horn interneurons. Activation of such Gal(1) receptors may thus decrease the inhibitory tone in the superficial dorsal horn, and possibly cause antinociception.