The Journal of comparative neurology
-
Comparative Study
Severe alcohol-induced neuronal deficits in the hippocampus and neocortex of neonatal mice genetically deficient for neuronal nitric oxide synthase (nNOS).
Alcohol can severely damage the developing brain, and neuronal loss is a critical component of this injury. Thus, identification of molecular factors that ameliorate alcohol-induced neuronal loss is of great importance. Previous in vitro work has demonstrated that nitric oxide (NO) protects neurons against alcohol toxicity. ⋯ Furthermore, the threshold dose of alcohol to induce cell death was lower in the nNOS-/- mice than in the wildtype mice for all neuronal populations. While nNOS deficiency worsened alcohol-induced neuronal losses, the magnitude of this exacerbation varied among brain regions and depended on alcohol dose. These results demonstrate that nNOS deficiency decreases the ability of developing neurons in vivo to survive the toxic effects of alcohol and strengthen the hypothesis that NO exerts a neuroprotective effect against alcohol toxicity in the developing brain.
-
Comparative Study
Afferent and efferent connections of the rat retrotrapezoid nucleus.
The rat retrotrapezoid nucleus (RTN) contains candidate central chemoreceptors that have extensive dendrites within the marginal layer (ML). This study describes the axonal projections of RTN neurons and their probable synaptic inputs. The ML showed a dense plexus of nerve terminals immunoreactive (ir) for markers of glutamatergic (vesicular glutamate transporters VGLUT1-3), gamma-aminobutyric acid (GABA)-ergic, adrenergic, serotonergic, cholinergic, and peptidergic transmission. ⋯ In each target region, a large percentage of the BDA-ir varicosities was VGLUT2-ir (41-83%). Putative afferent input to RTN originated from spinal cord, caudal NTS, area postrema, VRC, dorsolateral pons, raphe nuclei, lateral hypothalamus, central amygdala, and insular cortex. The results suggest that 1) whether or not the ML is specialized for CO(2) sensing, its complex neuropil likely regulates the activity of RTN chemosensitive neurons; 2) the catecholaminergic, cholinergic, and serotonergic innervation of RTN represents a possible substrate for the known state-dependent control of RTN chemoreceptors; 3) VGLUT3-ir terminals are a probable marker of RTN; and 4) the chemosensitive neurons of RTN may provide a chemical drive to multiple respiratory outflows, insofar as RTN innervates the entire VRC.
-
Orofacial injury activates two distinct regions in the spinal trigeminal complex, the subnuclei interpolaris/caudalis (Vi/Vc) transition zone and the laminated Vc, or medullary dorsal horn (MDH). Studies suggest that the Vi/Vc transition zone plays an important role in processing orofacial deep input. To test this hypothesis, we employed a double-tracing strategy to compare central projections of primary afferent neurons that innervate the masseter muscle and the overlying skin. ⋯ In contrast, hyperalgesia after inflammation of the skin overlying the masseter was attenuated by injection of AP-5 into the MDH but not Vi/Vc. These results indicate that while both masseter and cutaneous inputs project to the MDH, masseter afferents provide an additional input to the Vi/Vc. These findings provide further evidence to support a role of the trigeminal transition zone in response to orofacial deep injury.
-
Comparative Study
Sox3 expression identifies neural progenitors in persistent neonatal and adult mouse forebrain germinative zones.
Neural precursors persist throughout life in the rodent forebrain subventricular zone (SVZ) and hippocampal dentate gyrus. The regulation of persistent neural stem cells is poorly understood, in part because of the lack of neural progenitor markers. The Sox B1 subfamily of HMG-box transcription factors (Sox1-3) is expressed by precursors in the embryonic nervous system, where these factors maintain neural progenitors in an undifferentiated state while suppressing neuronal differentiation. ⋯ Sox3 immunoreactivity in hESCs appears upon differentiation to neural progenitors and then decreases as cells differentiate further into neurons. These findings suggest that Sox3 labels specific stages of hESC-derived and murine neonatal and adult neural progenitors and are consistent with a role for Sox3 in neural stem cell maintenance. Persistent Sox3 expression in some mature neuronal populations suggests additional undefined roles for Sox3 in neuronal function.
-
Comparative Study
Neonatal deafness results in degraded topographic specificity of auditory nerve projections to the cochlear nucleus in cats.
We previously examined the early postnatal maturation of the primary afferent auditory nerve projections from the cat cochlear spiral ganglion (SG) to the cochlear nucleus (CN). In normal kittens these projections exhibit clear cochleotopic organization before birth, but quantitative data showed that their topographic specificity is less precise in perinatal kittens than in adults. Normalized for CN size, projections to the anteroventral (AVCN), posteroventral (PVCN), and dorsal (DCN) subdivisions are all significantly broader in neonates than in adults. ⋯ However, when normalized for the smaller CN size in deafened animals, projections are disproportionately broader than in controls; AVCN, PVCN, and DCN projections are 39, 26, and 48% broader, respectively, than predicted if they were precisely proportionate to projections in normal hearing animals. These findings suggest that normal auditory experience and neural activity are essential for the early postnatal development (or subsequent maintenance) of the topographic precision of SG-to-CN projections. After early deafness, the basic cochleotopic organization of the CN is established and maintained into adulthood, but the CN is severely reduced in size and the topographic specificity of primary afferent projections that underlies frequency resolution in the normal central auditory system is significantly degraded.