The Journal of comparative neurology
-
Comparative Study
Saccadic omnipause and burst neurons in monkey and human are ensheathed by perineuronal nets but differ in their expression of calcium-binding proteins.
The extracellular matrix of the brain contains large aggregates of chondroitin sulfate proteoglycans (CSPG), which form lattice-like cell coatings around distinct neuron populations and are termed perineuronal nets. The function of perineuronal nets is not fully understood, but they are often found around neurons containing the calcium-binding protein parvalbumin, suggesting a function in primarily highly active neurons. In the present paper the distribution of perineuronal nets was studied in two functional cell groups of the primate oculomotor system with well-known firing properties: 1) the saccadic omnipause neurons in the nucleus raphe interpositus (RIP) exhibit a high tonic firing rate, which is only interrupted during saccades; they are inhibitory and use glycine as a transmitter; and 2) premotor burst neurons for vertical saccades in the rostral interstitial nucleus of the medial longitudinal fascicle (RiMLF) fire with high-frequency bursts during saccades; they are excitatory and use glutamate and/or aspartate as a transmitter. ⋯ Calretinin was coexpressed in at least 70% of the saccadic burst neurons, but not in the omnipause neurons. Parallel staining of human tissue revealed strongly labeled perineuronal nets around the saccadic omnipause and burst neurons, in corresponding brainstem regions, which specifically highlighted these neurons within the poorly structured reticular formation. These findings support the hypothesis that perineuronal nets may provide a specialized microenvironment for highly active neurons to maintain their fast-spiking activity and are not related to the transmitter or the postsynaptic action of the ensheathed neurons.
-
The rat dentate gyrus is usually described as relatively homogeneous. Here, we present anatomic and physiological data which demonstrate that there are striking differences between the supra- and infrapyramidal blades after status epilepticus and recurrent seizures. These differences appear to be an accentuation of a subtle asymmetry present in normal rats. ⋯ Of interest, some normal rats also showed signs of greater evoked responses in the infrapyramidal blade, and this could be detected with both microelectrode recording and optical imaging techniques. Although there were no signs of hyperexcitability in normal rats, the data suggest that there is some asymmetry in the normal dentate gyrus and this asymmetry is enhanced by seizures. Taken together, the results suggest that supra- and infrapyramidal blades of the dentate gyrus could have different circuit functions and that the infrapyramidal blade may play a greater role in activating the hippocampus.
-
This study examined tyrosine kinase receptor (Trk) expression and phosphorylation in lumbosacral dorsal root ganglia (DRG) after acute (8 or 48 hours) or chronic (10 days) cyclophosphamide (CYP)-induced cystitis. Increases in the number of TrkA-immunoreactive (IR) cell profiles were detected in the L1 and L6 DRG (four-fold; P < or = 0.01) and the S1 DRG (1.5-fold; P < or = 0.05) but not in the L2, L4, and L5 DRG with CYP-induced cystitis of acute and chronic duration compared with control rats. The number of TrkB-IR cell profiles increased in the L1 and L2 DRG (L1: 2.6-fold; L2: 1.4-fold; P < or = 0.05) and in the L6 and S1 DRG (L6: 2.2-fold; S1: 1.3-fold; P < or = 0.05) only after acute CYP treatment (8 hours). ⋯ TrkA-IR and TrkB-IR cell profiles also demonstrated phosphorylated Trk-IR with acute and/or chronic CYP-induced cystitis. These results demonstrated that CYP-induced cystitis increases the expression and phosphorylation of Trk receptors in lumbosacral DRG. Expression of neurotrophic factors in the inflamed urinary bladder may contribute to this increased expression, and neurotrophic factor and Trk interactions may play unique roles in decreased urinary tract plasticity with CYP-induced cystitis.
-
Nogo (reticulon-4) is a myelin-associated protein that is expressed in three different splice variants, Nogo-A, Nogo-B, and Nogo-C. Nogo-A inhibits neurite regeneration in the central nervous system. Messenger RNA encoding Nogo is expressed in oligodendrocytes and central and peripheral neurons, but not in astrocytes or Schwann cells. ⋯ In the adult mouse strong Nogo-R mRNA expression was found in neurons in neocortex, hippocampus, amygdala, habenula, thalamic nuclei, brainstem, the granular cell layer of cerebellum, and the mitral cell layer of the olfactory bulb. Neurons in the adult mouse striatum, the medial septal nucleus, and spinal cord did not express Nogo-R mRNA at detectable levels. In summary, Nogo-66-R mRNA expression in humans and mice was observed in neurons of the developing nervous system Expression was downregulated in the adult spinal cord of both species, and specific expression patterns were seen in the adult brain.
-
Spinal cord injury (SCI) induces retrograde cell death in descending pathways, which can be prevented by long-term intrathecal infusion of neurotrophins (Novikova et al. [2000] Eur J Neurosci 12:776-780). The present study investigates whether the same treatment also leads to improved regeneration of the injured tracts. After cervical SCI in adult rats, a peripheral nerve graft was attached to the rostral wall of the lesion cavity. ⋯ In comparison with untreated controls, the latter treatment also caused 35% reduction in axonal sprouting of descending pathways rostral to the lesion site and 72% reduction in the number of spinal cord neurons extending axons into the nerve graft. Local and short-term treatments neither prevented retrograde cell death nor enhanced regeneration of descending tracts, but induced robust regeneration of spinal cord neurons into the nerve graft. These results indicate that the signal pathways promoting neuronal survival and axonal regeneration, respectively, in descending tracts after SCI respond differently to neurotrophic stimuli and that efficient rescue of axotomized tract neurons is not a sufficient prerequisite for regeneration.