The Journal of comparative neurology
-
We describe the expression of mRNA encoding ligands and receptors of members of the GDNF family and members of the neurotrophin family in the adult human spinal cord and dorsal root ganglia (DRG). Fetal human spinal cord and ganglia were investigated for the presence of ligands and receptors of the neurotrophin family. Tissues were collected from human organ donors and after routine elective abortions. ⋯ Fetal DRG cells were positive for the same probes as adult DRG cells except for NT-3, which was only found in fetal DRG cells. Messenger RNA species only expressed at detectable levels in fetal but not adult spinal cord tissues included GDNF, GFR alpha-2, NT-3, and p75. Notably, GFR alpha-2, which is expressed in the adult rat spinal cord, was not found in the adult human spinal cord.
-
Patients with a peripheral nerve injury often suffer from persistent chronic pain, but the underlying mechanism remains largely unknown. The persistent nature of the pain suggests injury-induced profound structural changes along the sensory pathways. In the present study, using the plant Griffonia simplicifolia I isolectin B4 (IB4) as a marker for nonpeptidergic small sensory neurons, we sought to examine whether these neurons sprout in the dorsal root ganglia (DRG) in response to peripheral nerve injury. ⋯ Ultrastructural examinations further confirmed that IB4-positive nerve terminals were entangled with satellite cells and IB4-negative unmyelinated sprouting fibers around sensory neurons. These studies have provided the first evidence that a subpopulation of IB4-binding small sensory neurons sprouts and forms perineuronal ring structures together with IB4-positive satellite cells in response to nerve injury. The significance of the sprouting of IB4-positive neurons remains to be determined.
-
The specific mechanisms by which nervous system injury becomes a chronic pain state remain undetermined. Historically, it has been believed that injuries proximal or distal to the dorsal root ganglion (DRG) produce distinct pathologies that manifest in different severity of symptoms. This study investigated the role of injury site relative to the DRG in (1) eliciting behavioral responses, (2) inducing spinal neuroimmune activation, and (3) responding to pharmacologic interventions. ⋯ The degree of microglial and astrocytic activation in the L5 spinal cord was also similar for both injuries. In contrast, the pharmacologic treatments were more effective in alleviating mechanical allodynia for peripheral nerve injury than nerve root injury, suggesting that nerve root injury elicits a more robust, centrally mediated response than peripheral nerve injury. Overall, these data implicate alternate nociceptive mechanisms in these anatomically different injuries that are not distinguished by behavioral testing or the neuroimmune markers used in this study.
-
The present study used anterograde and retrograde tract tracing techniques to examine the organization of the medial preoptic-periaqueductal gray-nucleus paragigantocellularis pathway in the male rat. The location of neurons containing estrogen (alpha subtype; ER alpha) and androgen receptors (AR) were also examined. We report here that injection of the anterograde tracer biotinylated dextran amine (BDA) into the medial preoptic (MPO) produced dense labeling within the periaqueductal gray (PAG); anterogradely labeled fibers terminated in close juxtaposition to neurons retrogradely labeled from the nucleus paragigantocellularis (nPGi). ⋯ These results are the first to establish an MPO-->PAG-->nPGi circuit and further indicate that gonadal steroids can influence neuronal synaptic activity within these sites. We reported previously that nPGi reticulospinal neurons terminate preferentially within the motoneuronal pools of the lumbosacral spinal cord that innervate the pelvic viscera. Together, we propose that the MPO-->PAG-->nPGi circuit forms the final common pathway whereby MPO neural output results in the initiation and maintenance of male copulatory reflexes.
-
The firing pattern of auditory neurons is determined in part by the type of voltage-sensitive potassium channels expressed. The expression patterns for two high-threshold potassium channels, Kv3.1 and Kv3.3, that differ in inactivation properties were examined in the rat auditory system. The positive activation voltage and rapid deactivation kinetics of these channels provide rapid repolarization of action potentials with little effect on action potential threshold. ⋯ The distribution of stained somata and neuropil varied across auditory nuclei and correlated with the distribution of Kv3.1 mRNA-expressing neurons and their terminal arborizations, respectively. The intensity of Kv3.1 immunoreactivity varied across the tonotopic map in the medial nucleus of the trapezoid body with neurons responding best to high-frequency tones most intensely labeled. Thus, auditory neurons may vary the types and amount of K(+) channel expression in response to synaptic input to subtly tune their firing properties.