The Journal of comparative neurology
-
In order to study the morphological substrate of possible thalamic influence on the cells of origin and area of termination of the projection from the entorhinal cortex to the hippocampal formation, we examined the pathways, terminal distribution, and ultrastructure of the innervation of the hippocampal formation and parahippocampal region by the nucleus reuniens of the thalamus (NRT). We employed anterograde tracing with Phaseolus vulgaris-leucoagglutinin (PHA-L). Injections of PHA-L in the NRT produce fiber and terminal labeling in the stratum lacunosum-moleculare of field CA1 of the hippocampus, the molecular layer of the subiculum, layers I and III/IV of the dorsal subdivision of the lateral entorhinal area (DLEA), and layers I and III-VI of the ventral lateral (VLEA) and medial (MEA) divisions of the entorhinal cortex. ⋯ They participate in the innervation of the ventral part of the subiculum and MEA. Electron microscopy was used to visualize the axon terminals of PHA-L-labeled reuniens fibers. These terminals possess spherical synaptic vesicles and form asymmetric synaptic contacts with dendritic spines or with thin shafts of spinous dendrites.(ABSTRACT TRUNCATED AT 400 WORDS)
-
The distribution of two calcium-binding proteins, parvalbumin (PV) and calbindin-D 28K (CaBP), was studied by the peroxidase-anti-peroxidase immunohistochemical method at the light and electron microscopic level in the rat spinal cord and dorsal root ganglia. The possible coexistence of these two proteins was also investigated. PV-positive neurons were revealed in all layers of the spinal cord, except lamina I, which was devoid of labelling. ⋯ Dorsal root ganglia displayed both PV- and CaBP-immunopositivity. The cell diameter distribution histogram of PV-positive neurons disclosed two peaks--one at 35 microns and the other at 50 microns. CaBP-positive cells in the dorsal root ganglia corresponded to subgroups of small and large neurons with mean diameters of 25 microns and 45 microns, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)
-
The present study was undertaken to establish the precise anatomical relationship of the subthalamic nucleus (STh) with limbic lobe-afferented parts of the basal ganglia in the rat. The anterograde tracer Phaseolus vulgaris-leucoagglutinin (PHA-L), injected in the STh, the globus pallidus, the ventral pallidum, the ventral striatum, and the parafascicular thalamic nucleus, and the retrograde tracers Fluoro-Gold (FG) and cholera toxin B (CTb), injected in the globus pallidus, the ventral pallidum, the ventral striatum, and the ventral mesencephalon, were used for this purpose. The results of these tracing experiments confirm the general notion of reciprocal connections between the STh and pallidal areas. ⋯ The lateral part of the parafascicular thalamic nucleus projects to the lateral part of the STh, whereas parafascicular neurons medial to the fasciculus retroflexus project to the dorsomedial portion of the STh. The medial part of the STh and the adjacent lateral hypothalamus are intimately connected with limbic parts of the basal ganglia in a way similar and parallel to the connections of the lateral STh with motor-related parts of the basal ganglia. These findings suggest a role for the STh in nonmotor functions of the basal ganglia.
-
The number, types, and distribution of distinct classes of axons and glia in four cerebral commissures of the adult rhesus monkey (Macaca mulatta) were determined using electron microscopic and immunocytochemical methods. The two neocortical commissures, the corpus callosum, and the anterior commissure contain small but cytologically distinct archicortical components: the hippocampal commissure, which lies ventral to the splenium of the corpus callosum, and the basal telencephalic commissure, which forms a small crescent at the anterior margin of the anterior commissure. Each archicortical pathway is delineated from the adjacent neocortical commissure by a glial capsule. ⋯ Subregions of the corpus callosum as well as each of the other commissures consist of characteristic subsets of five classes of axons and contain different proportions of myelinated to unmyelinated fibers. The largest myelinated axons and the smallest proportion of unmyelinated axons (approximately 6%) are found in regions of the corpus callosum that carry projections from primary sensory cortices, whereas the smallest myelinated axons and largest proportion of unmyelinated axons (approximately 30%) are found in regions of the corpus callosum that carry projections from association cortices. Axon composition in the anterior commissure is uniform and resembles that of callosal sectors that contain association projections.(ABSTRACT TRUNCATED AT 400 WORDS)
-
The nucleus paragigantocellularis in the ventrolateral medulla has been implicated in cardiovascular, pain, and analgesic functions; and it has also been found to be a major afferent to the pontine nucleus locus coeruleus. In the present study, afferents to the nucleus paragigantocellularis were identified in the rat by means of the retrograde tracers wheat germ agglutinin-conjugated horseradish peroxidase or Fluoro-Gold. Projections to the nucleus paragigantocellularis arise from a wide variety of nuclei with autonomic, visceral, and sensory-related functions. ⋯ The inferior collicular injections yielded strong but restricted anterograde labeling in the rostromedial paragigantocellularis, medial to the facial nucleus. These results indicate that the paragigantocellularis area receives inputs from diverse brain structures. Neurons in the nucleus paragigantocellularis afferent to the locus coeruleus, being distributed throughout this region, may provide a channel where several types of information are integrated and transmitted to the extensive locus coeruleus noradrenergic efferent network...