Nature
-
Macroautophagy (hereafter referred to as autophagy) is a process in which organelles termed autophagosomes deliver cytoplasmic constituents to lysosomes for degradation. Autophagy has a major role in cellular homeostasis and has been implicated in various forms of human disease. The role of autophagy in cancer seems to be complex, with reports indicating both pro-tumorigenic and tumour-suppressive roles. ⋯ In marked contrast, in mice containing oncogenic Kras and lacking p53, loss of autophagy no longer blocks tumour progression, but actually accelerates tumour onset, with metabolic analysis revealing enhanced glucose uptake and enrichment of anabolic pathways, which can fuel tumour growth. These findings provide considerable insight into the role of autophagy in cancer and have important implications for autophagy inhibition in cancer therapy. In this regard, we also show that treatment of mice with the autophagy inhibitor hydroxychloroquine, which is currently being used in several clinical trials, significantly accelerates tumour formation in mice containing oncogenic Kras but lacking p53.
-
The 2002-3 pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV) was one of the most significant public health events in recent history. An ongoing outbreak of Middle East respiratory syndrome coronavirus suggests that this group of viruses remains a key threat and that their distribution is wider than previously recognized. Although bats have been suggested to be the natural reservoirs of both viruses, attempts to isolate the progenitor virus of SARS-CoV from bats have been unsuccessful. ⋯ Preliminary in vitro testing indicates that WIV1 also has a broad species tropism. Our results provide the strongest evidence to date that Chinese horseshoe bats are natural reservoirs of SARS-CoV, and that intermediate hosts may not be necessary for direct human infection by some bat SL-CoVs. They also highlight the importance of pathogen-discovery programs targeting high-risk wildlife groups in emerging disease hotspots as a strategy for pandemic preparedness.