Nature
-
Observational Study
SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses.
This reassuring study published in Nature by researchers from Wash U Med investigated persisting COVID immunity following the Pfizer mRNA vaccination (BNT162b2). Turner et al. looked at the presence of not only circulating antibody-secreting B cells, but also germinal centre B cells found in the axillary lymph nodes of 14 study volunteers.
While the persistence of mRNA-vaccine induced immunity to SARS-CoV-2 has already been demonstrated to last at least 6 months, and likely 12 months, we just do not yet have the data to know if or when vaccine boosters will be required beyond that.
Turner's study is particularly exciting because they found spike-protein binding B cells in the germinal centre of draining lymph nodes in all 14 post-immunisation participants for the full 15 weeks of the study. The germinal centre response was so vigorous and persistent that the researchers believe this could represent COVID-protection lasting for years.
"Ellebedy said the immune response observed in his team’s study appears so robust and persistent that he thinks that it could last for years. The researcher based his assessment on the fact that germinal centre reactions that persist for several months or longer usually indicate an extremely vigorous immune response that culminates in the production of large numbers of long-lasting immune cells, called memory B cells. Some memory B cells can survive for years or even decades..." – Dr Francis Collins, NIH Directors Blog
This study builds on the same team's earlier work (Turner 2021 May) looking at bone marrow plasma cells in those who have recovered from mild COVID infection, also showing a long-lived immune response.
COVID persistent immunity takeaway:
Although COVID-19 and developed vaccines have been circulating for only 12-18 months, these immune-response studies give some hope that the miracle of mRNA vaccines may not only be in their efficacy, but also in the longevity of protection.
summary -
Vaccine-induced immune thrombotic thrombocytopaenia (VITT) is a rare adverse effect of COVID-19 adenoviral vector vaccines1-3. VITT resembles heparin-induced thrombocytopaenia (HIT) in that it is associated with platelet-activating antibodies against platelet factor 4 (PF4)4; however, patients with VITT develop thrombocytopaenia and thrombosis without exposure to heparin. Here we sought to determine the binding site on PF4 of antibodies from patients with VITT. ⋯ Biolayer interferometry experiments also revealed that VITT anti-PF4 antibodies had a stronger binding response to PF4 and PF4-heparin complexes than did HIT anti-PF4 antibodies, albeit with similar dissociation rates. Our data indicate that VITT antibodies can mimic the effect of heparin by binding to a similar site on PF4; this allows PF4 tetramers to cluster and form immune complexes, which in turn causes Fcγ receptor IIa (FcγRIIa; also known as CD32a)-dependent platelet activation. These results provide an explanation for VITT-antibody-induced platelet activation that could contribute to thrombosis.
-
Randomized Controlled Trial Multicenter Study
Immunogenicity of Ad26.COV2.S vaccine against SARS-CoV-2 variants in humans.
The Ad26. COV2. S vaccine1-3 has demonstrated clinical efficacy against symptomatic COVID-19, including against the B.1.351 variant that is partially resistant to neutralizing antibodies1. ⋯ COV2. S were reduced against the B.1.351 and P.1 variants, but functional non-neutralizing antibody responses and T cell responses were largely preserved against SARS-CoV-2 variants. These findings have implications for vaccine protection against SARS-CoV-2 variants of concern.