Brain research. Molecular brain research
-
Brain Res. Mol. Brain Res. · Nov 2001
Dorsal root ganglion neurons show increased expression of the calcium channel alpha2delta-1 subunit following partial sciatic nerve injury.
Neuropathic pain is associated with changes in the electrophysiological and neurochemical properties of injured primary afferent neurons. A mRNA differential display study in rat L(4/5) dorsal root ganglia (DRGs) revealed upregulation of the calcium channel alpha2delta-1 subunit 2 weeks after partial sciatic nerve ligation (Seltzer model of neuropathic pain). The upregulated transcript appeared to represent previously unidentified sequence from the 3'-untranslated region of rat alpha2delta-1 mRNA. ⋯ The most intensely labelled neuronal profiles in ipsilateral, sham and contralateral DRGs, were generally those with small cross-sectional areas. The alpha2delta-1 auxiliary subunit is known to modulate calcium channel function in heterologous expression systems via its association with the pore-forming alpha1 calcium channel subunit. Therefore the increased levels of this subunit in the populations of primary afferents described may, via modulation of calcium-dependent processes such as neurotransmitter release and neuronal excitability, influence the processing of sensory information.
-
Brain Res. Mol. Brain Res. · Sep 2001
Comparative StudyThe floor plate cells from bovines express the mRNA encoding for SCO-spondin and its translation products.
The floor plate (FP) is a transient structure of the embryonic central nervous system (CNS) which plays a key role in development driving cell differentiation and patterning in the ventral neural tube. The fact that antisera raised against subcommissural organ (SCO) secretion immunostain FP cells and react with high-molecular-mass proteins in FP extracts, prompted us to investigate the expression of a SCO-related polypeptide in FP cells. RNA from bovine FP was analyzed by means of reverse transcriptase polymerase chain reaction (RT-PCR), using primers derived from the 3' end of SCO-spondin which revealed products of 233, 237, 519 and 783 bp. ⋯ FP-translation of the SCO-spondin encoded polypeptide(s) was demonstrated by Western blot analysis and immunocytochemistry, using antisera raised against (i) the glycoproteins secreted by the bovine SCO, and (ii) a peptide derived from the open reading frame of the major SCO secretory protein, SCO-spondin, respectively. Additional evidence pointing to active transcription and translation of a SCO-spondin related gene was obtained in long term FP organ cultures. On the basis of partial sequence homologies of SCO-spondin with protein domains implicated in cell-cell contacts, cell-matrix interactions and neurite outgrowth it is possible to suggest that the SCO-spondin secreted by the FP is involved in CNS development.
-
Brain Res. Mol. Brain Res. · Sep 2001
Differential expression of alpha1-adrenoceptor subtype mRNAs in the dorsal root ganglion after spinal nerve ligation.
In spinal nerve ligated Lewis strain neuropathic rats, pain behaviors and the rate of ectopic discharges of injured sensory neurons were significantly reduced by systemic injection of phentolamine. A pharmacological study indicated that this adrenergic dependency was mediated by alpha(1)-adrenoceptors (alpha(1)-AR). The development of adrenergic sensitivity in injured sensory neurons might have resulted from changes in adrenoceptor expression as a consequence of changed expression of adrenoceptor genes. ⋯ The amount of alpha(1a)-AR mRNA was decreased to 20% of the normal level while that of alpha(1d)-AR mRNA did not change. The in situ hybridization study showed that the number of alpha(1b)-AR mRNA positive neurons increased in spinal nerve ligated DRG, confirming the results of RPA study. These data suggest that the up-regulated expression of alpha(1b)-AR mRNA in axotomized DRG neurons may play an important role in the development of adrenergic sensitivity in injured sensory neurons and thus contribute to the sympathetically maintained pain in spinal nerve ligated neuropathic Lewis rats.
-
Brain Res. Mol. Brain Res. · Sep 2001
Selective increases in cytokine expression in the rat brain in response to striatal injection of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate and interleukin-1.
A number of cytokines contribute to acute experimental neurodegeneration. The cytokine response can have detrimental or beneficial effects depending on the temporal profile and balance between pro- and anti-inflammatory molecules. Our recent data suggest that the pro-inflammatory cytokine interleukin-1beta (IL-1beta) acts at specific sites (e.g., the striatum) in the rat brain to cause distant cortical injury, when co-administered with the potent excitotoxin alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (S-AMPA). ⋯ A similar pattern of change in the levels of IL-1alpha and IL-6 protein was observed 8 h after treatment. These data demonstrate selective increases in the expression of cytokines in areas of remote cell death in response to administration of hrIL-1beta and S-AMPA. Such cytokines may be involved in the ensuing damage, and further clarification of their actions could aid future therapeutic strategies for several acute neurodegenerative disorders.
-
Brain Res. Mol. Brain Res. · Apr 2001
Cardiovascular responses to subseptic doses of endotoxin contribute to differential neuronal activation in rat brain.
The contribution of cardiovascular activity in the early central responses to systemic inflammation was assessed in rats following intravenous administration of subseptic doses of lipopolysaccharide (LPS). LPS at 12.5 microg/kg increased heart rate (HR) but did not alter mean arterial pressure (MAP), and induced interleukin-1 beta (IL-1 beta) gene expression at 1 h in circumventricular organs (CVOs), choroid plexus, meninges, blood vessels, and pituitary gland. IL-1 beta mRNA levels were attenuated at 2 h in most regions studied. ⋯ After 2 h, FLI was widespread throughout the brain. Plasma ACTH levels were elevated at 1 and 2 h in response to both doses of LPS, and levels of CRF mRNA were increased after 2 h in the parvocellular PVN. Our results reveal that central responses to increasing doses of LPS show different patterns which are related to activation of distinct immune and viscerosensory pathways, and that cardiovascular responses contribute to early neuronal activation as LPS concentrations are increased.