Nucleic acids research
-
The Human Metabolome Database (HMDB, http://www.hmdb.ca) is a richly annotated resource that is designed to address the broad needs of biochemists, clinical chemists, physicians, medical geneticists, nutritionists and members of the metabolomics community. Since its first release in 2007, the HMDB has been used to facilitate the research for nearly 100 published studies in metabolomics, clinical biochemistry and systems biology. The most recent release of HMDB (version 2.0) has been significantly expanded and enhanced over the previous release (version 1.0). ⋯ These include better algorithms for spectral searching and matching, more powerful chemical substructure searches, faster text searching software, as well as dedicated pathway searching tools and customized, clickable metabolic maps. Changes to the user-interface have also been implemented to accommodate future expansion and to make database navigation much easier. These improvements should make the HMDB much more useful to a much wider community of users.
-
Nucleic acids research · Sep 2008
The G-quartet containing FMRP binding site in FMR1 mRNA is a potent exonic splicing enhancer.
The fragile X mental retardation protein (FMRP) is a RNA-binding protein proposed to post-transcriptionally regulate the expression of genes important for neuronal development and synaptic plasticity. We previously demonstrated that FMRP binds to its own FMR1 mRNA via a guanine-quartet (G-quartet) RNA motif. However, the functional effect of this binding on FMR1 expression was not established. ⋯ We show instead that the FBS is a potent exonic splicing enhancer in a minigene system. Furthermore, FMR1 alternative splicing is affected by the intracellular level of FMRP. These data suggest that the G-quartet motif present in the FMR1 mRNA can act as a control element of its alternative splicing in a negative autoregulatory loop.
-
Nucleic acids research · Aug 2008
Efficient delivery of RNA Interference to peripheral neurons in vivo using herpes simplex virus.
Considerable interest has been focused on inducing RNA interference (RNAi) in neurons to study gene function and identify new targets for disease intervention. Although small interfering RNAs (siRNAs) have been used to silence genes in neurons, in vivo delivery of RNAi remains a major challenge limiting its applications. We have developed a highly efficient method for in vivo gene silencing in dorsal root ganglia (DRG) using replication-defective herpes simplex viral (HSV-1) vectors. ⋯ We further establish proof of concept by demonstrating in vivo silencing of the endogenous trpv1 gene. These data are the first to show silencing in DRG neurons in vivo by vector-mediated delivery of shRNA. Our results support the utility of HSV vectors for gene silencing in peripheral neurons and the potential application of this technology to the study of nociceptive processes and in pain gene target validation studies.
-
Nucleic acids research · Jan 2008
NetworKIN: a resource for exploring cellular phosphorylation networks.
Protein kinases control cellular responses by phosphorylating specific substrates. Recent proteome-wide mapping of protein phosphorylation sites by mass spectrometry has discovered thousands of in vivo sites. Systematically assigning all 518 human kinases to all these sites is a challenging problem. ⋯ Here, we describe how NetworKIN can be used for both global and targeted molecular studies. Via the web interface users can query the database of precomputed kinase-substrate relations or obtain predictions on novel phosphoproteins. The database currently contains a predicted phosphorylation network with 20,224 site-specific interactions involving 3978 phosphoproteins and 73 human kinases from 20 families.
-
Nucleic acids research · Jul 2007
ProSight PTM 2.0: improved protein identification and characterization for top down mass spectrometry.
ProSight PTM 2.0 (http://prosightptm2.scs.uiuc.edu) is the next generation of the ProSight PTM web-based system for the identification and characterization of proteins using top down tandem mass spectrometry. It introduces an entirely new data-driven interface, integrated Sequence Gazer for protein characterization, support for fixed modifications, terminal modifications and improved support for multiple precursor ions (multiplexing). Furthermore, it supports data import and export for local analysis and collaboration.