Frontiers in microbiology
-
Frontiers in microbiology · Jan 2018
Persistence and Microevolution of Pseudomonas aeruginosa in the Cystic Fibrosis Lung: A Single-Patient Longitudinal Genomic Study.
Background: During its persistence in cystic fibrosis (CF) airways, P. aeruginosa develops a series of phenotypic changes by the accumulation of pathoadaptive mutations. A better understanding of the role of these mutations in the adaptive process, with particular reference to the development of multidrug resistance (MDR), is essential for future development of novel therapeutic approaches, including the identification of new drug targets and the implementation of more efficient antibiotic therapy. Although several whole-genome sequencing studies on P. aeruginosa CF lineages have been published, the evolutionary trajectories in relation to the development of antimicrobial resistance remain mostly unexplored to date. ⋯ Genomic analyses of the population indicated a correlation between the evolution of antibiotic resistance profiles and phylogenetic relationships, and a number of putative pathoadaptive variations were identified. Conclusion: This study provides valuable insights into the within-host adaptation and microevolution of P. aeruginosa in the CF lung and revealed the emergence of an MDR phenotype over time, which could not be comprehensively explained by the variations found in known resistance genes. Further investigations on uncharacterized variations disclosed in this study should help to increase our understanding of the development of MDR phenotype and the poor outcome of antibiotic therapies in many CF patients.
-
Frontiers in microbiology · Jan 2018
Body Mass Index Differences in the Gut Microbiota Are Gender Specific.
Background: The gut microbiota is increasingly recognized as playing an important role in the development of obesity, but the influence of gender remains elusive. Using a large cohort of Chinese adults, our study aimed to identify differences in gut microbiota as a function of body mass index (BMI) and investigate gender specific features within these differences. Methods: Five hundred fifty-one participants were categorized as underweight, normal, overweight, or obese, based on their BMI. ⋯ The microbial ecological network of the obese group contained more antagonistic microbial interactions as well as high-degree nodes. Conclusion: Using a large Chinese cohort, we demonstrated BMI-associated differences in gut microbiota composition, functions, and ecological networks, which were influenced by gender. Results in this area have shown variability across several independent studies, suggesting that further investigation is needed to understand the role of the microbiota in modulating host energy harvest and storage, and the impact of sex on these functions.