Frontiers in microbiology
-
Frontiers in microbiology · Jan 2020
Variability of Gut Microbiota Across the Life Cycle of Grapholita molesta (Lepidoptera: Tortricidae).
Grapholita molesta, the oriental fruit moth, is a serious global pest of many Rosaceae fruit trees. Gut microorganisms play important roles in host nutrition, digestion, detoxification, and resistance to pathogens. However, there are few studies on the microbiota of G. molesta, particularly during metamorphosis. ⋯ Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis indicated that most functional prediction categories of gut microbiota were related to membrane transport, carbohydrate and amino acid metabolism, and DNA replication and repair. Bacteria isolated by conventional culture-dependent methods belonged to Proteobacteria, Firmicutes, and Actinobacteria, which was consistent with high-throughput sequencing results. In conclusion, exploration of gut bacterial community composition in the gut of G. molesta should shed light into deeper understanding about the intricate associations between microbiota and host and might provide clues to the development of novel pest management strategies against fruit borers.
-
The 2019 novel coronavirus disease (COVID-19), which is caused by the novel beta coronavirus, SARS-CoV-2, is currently prevalent all over the world, causing thousands of deaths with relatively high virulence. Like two other notable beta coronaviruses, severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1) and Middle East respiratory syndrome coronavirus (MERS-CoV), SARS-CoV-2 can lead to severe contagious respiratory disease. Due to impaired cellular immunity and physiological changes, pregnant women are susceptible to respiratory disease and are more likely to develop severe pneumonia. ⋯ However, limited data are available for the clinical course and management of COVID-19 in pregnancy. Therefore, we conducted this review to identify strategies for the obstetric management of COVID-19. We compared the clinical course and outcomes of COVID-19, SARS, and MERS in pregnancy and discussed several drugs for the treatment of COVID-19 in pregnancy.
-
Frontiers in microbiology · Jan 2020
ReviewIs There a Link Between the Pathogenic Human Coronavirus Envelope Protein and Immunopathology? A Review of the Literature.
Since the severe acute respiratory syndrome (SARS) outbreak in 2003, human coronaviruses (hCoVs) have been identified as causative agents of severe acute respiratory tract infections. Two more hCoV outbreaks have since occurred, the most recent being SARS-CoV-2, the causative agent of coronavirus disease 2019 (COVID-19). The clinical presentation of SARS and MERS is remarkably similar to COVID-19, with hyperinflammation causing a severe form of the disease in some patients. ⋯ The interaction between the SARS-CoV E protein and the host protein, syntenin, as well as the viroporin function of SARS-CoV E, are linked to this cytokine dysregulation. This review aims to compare the clinical presentation of virulent hCoVs with a specific focus on the cause of the immunopathology. The review also proposes that inhibition of IL-1β and IL-6 in severe cases can improve patient outcome.
-
Frontiers in microbiology · Jan 2020
Asymptomatic and Symptomatic Patients With Non-severe Coronavirus Disease (COVID-19) Have Similar Clinical Features and Virological Courses: A Retrospective Single Center Study.
The current outbreak of coronavirus disease 2019 (COVID-19) has been defined as a pandemic by the World Health Organization. We aimed to evaluate the clinical features and virological course of non-severe COVID-19 patients with or without symptoms who were admitted to a Chinese cabin hospital. In this retrospective single center study, we reviewed 252 laboratory-confirmed COVID-19 patients treated at one temporary cabin hospital in Wuhan, China. ⋯ In total, 69 (27.4%) patients were referred to the designated hospital and only 23 (9.1%) patients were referred due to the progression of pneumonia. Non-severe COVID-19 patients can transmit the disease regardless of their symptomatic status. It is highly recommended that asymptomatic patients be identified and quarantined to eliminate the transmission of COVID-19.
-
Frontiers in microbiology · Jan 2020
Quinolines-Based SARS-CoV-2 3CLpro and RdRp Inhibitors and Spike-RBD-ACE2 Inhibitor for Drug-Repurposing Against COVID-19: An in silico Analysis.
The novel coronavirus SARS-CoV-2 disease "COVID-19" emerged in China and rapidly spread to other countries; due to its rapid worldwide spread, the WHO has declared this as a global emergency. As there is no specific treatment prescribed to treat COVID-19, the seeking of suitable therapeutics among existing drugs seems valuable. The structure availability of coronavirus macromolecules has encouraged the finding of conceivable anti-SARS-CoV-2 therapeutics through in silico analysis. ⋯ Moreover, as SARS-CoV-2 Spike-glycoprotein uses human ACE2-receptor for viral entry, targeting the Spike-RBD-ACE2 has been viewed as a promising strategy to control the infection. The result shows rilapladib is the only quinoline that can interrupt the Spike-RBD-ACE2 complex. In conclusion, owing to their ability to target functional macromolecules of SARS-CoV-2, along with positive ADMET properties, quinoline,1,2,3,4-tetrahydro-1-[(2-phenylcyclopropyl)sulfonyl]-trans-(8CI), saquinavir, elvitegravir, oxolinic acid, and rilapladib are suggested for the treatment of COVID-19.