Alzheimer's research & therapy
-
Alzheimers Res Ther · Jan 2014
Performance on a pattern separation task by Alzheimer's patients shows possible links between disrupted dentate gyrus activity and apolipoprotein E ∈4 status and cerebrospinal fluid amyloid-β42 levels.
Emerging evidence suggests that decreased adult hippocampal neurogenesis represents an early critical event in the course of Alzheimer's disease (AD). In mice, adult neurogenesis is reduced by knock-in alleles for human apolipoprotein E (ApoE) ∈4. Decreased dentate gyrus (DG) neural progenitor cells proliferation has been observed in the triple-transgenic mouse model of AD (3xTg-AD); this reduction being directly associated with the presence of amyloid-β (Aβ) plaques and an increase in the number of Aβ-containing neurons in the hippocampus. Cognitive tasks involving difficult pattern separations have been shown to reflect DG activity and thus potentially neurogenesis in both animals and man. This study involved the administration of a pattern separation paradigm to Alzheimer's patients to investigate relationships between task performance and both ApoE status and cerebrospinal fluid (CSF) Aβ42 levels. ⋯ These are, to our knowledge, the first human pattern separation data to suggest a possible genetic link to poor hippocampal neurogenesis in AD, as well as a relationship to Aβ42. Therapies which target neurogenesis may thus be useful in preventing the early stages of AD, notably in ApoE ∈4 homocygotes.
-
Alzheimers Res Ther · Jan 2014
Pro: Are we ready to translate Alzheimer's disease modifying therapies to people with Down syndrome?
Down Syndrome (DS) is caused by trisomy of chromosome 21, which includes the gene for the amyloid precursor protein (APP) and leads to overproduction of beta-amyloid. Clinical-pathological studies indicate that individuals with DS begin demonstrating Alzheimer's disease (AD) pathology during adolescence and that 100% exhibit such changes by age 40. Individuals with DS therefore represent a highly enriched population for AD. Additionally, owing to their baseline intellectual disability, people with DS represent a more vulnerable group of individuals as compared with other populations. Given the recent developments in AD biomarkers, combined with the prospect of achieving greater efficacy with earlier therapeutic intervention, it is logical to include adults with DS in prevention trials for AD. ⋯ Individuals with DS comprise perhaps the largest group of people with genetically determined AD, with a worldwide population of about 6 million people. Only by inclusion can we provide access to rational therapies that offer the greatest chance of benefiting this highly at-risk population.