Frontiers in neuroscience
-
Frontiers in neuroscience · Jan 2019
Contactless Assessment of Cerebral Autoregulation by Photoplethysmographic Imaging at Green Illumination.
Accurate and practical assessment of the brain circulation is needed to adequately estimate the viability of cerebral blood flow regulatory mechanisms in various physiological conditions. The objective of our study was to examine feasibility of the contactless green-light imaging photoplethysmography (PPG) for assessing cerebral autoregulation by revealing the dynamic relationships between cortical microcirculation assessed by PPG and changes in systemic blood pressure caused by visceral and somatic peripheral stimuli. In anesthetized male Wistar rats, the PPG video images of the open parietal cortex (either with unimpaired or dissected dura mater), electrocardiogram, and systemic arterial blood pressure (ABP) in the femoral artery were continuously recorded before, during and after visceral (colorectal distension) or somatic (tail squeezing) stimulation. ⋯ Amplitude of the pulsatile PPG component probably reflects the regulation of vascular tone of cerebral cortex in response to systemic blood pressure fluctuations. When combined with different kinds of peripheral stimuli, the technique is capable for evaluation of normal and elucidation of impaired cerebrovascular system reactivity to particular physiological events, for example pain. The reported contactless PPG monitoring of cortical circulatory dynamics during neurosurgical interventions in combination with recordings of changes in other physiological parameters, such as systemic blood pressure and ECG, has the appealing potential to monitor viability of the cortex vessels and determine the state of patient's cerebrovascular autoregulation.
-
Frontiers in neuroscience · Jan 2019
Efficacy of a Neurofeedback Training on Attention and Driving Performance: Physiological and Behavioral Measures.
Increased attention and lower stress levels are associated with more functional and safe driving behavior, since they contribute to reduce distractibility and risk-taking at the wheel. Previous neuroscience research highlighted that NeuroFeedback (NF) training mediated by wearable devices could be effective in terms of neurocognitive strengthening and attention regulation with a direct effect on driving attentional performance. Thus, this research aims to test the effectiveness of a NF protocol on a sample of drivers, to observe its impact on attentional skills and psychophysiological levels of stress involved in driving behavior. 50 participants were randomly assigned to the experimental and active control group. ⋯ About the autonomic and neuropsychological measure, an increase in heart rate (HR) and an increased accuracy at the Stroop Task were detected: a specific increase of Stroop-related HR was found for the EXPg at t1. Also, reduced reaction times were found in the Multiple Features Target Cancellation for the EXPg at t1. Overall, the EXPg displayed a physiological, behavioral and neuropsychological increased efficiency related to attention as well as a driving-related behavioral improvement after NF training.
-
Frontiers in neuroscience · Jan 2018
ReviewParadigm Shift to Neuroimmunomodulation for Translational Neuroprotection in Stroke.
The treatment of acute ischemic stroke is still an unresolved clinical problem since the only approved therapeutic intervention relies on early blood flow restoration through pharmacological thrombolysis, mechanical thrombus removal, or a combination of both strategies. Due to their numerous complications and to the narrow time-window for the intervention, only a minority of stroke patients can actually benefit from revascularization procedures, highlighting the urgent need of identifying novel strategies to prevent the progression of an irreversible damage in the ischemic penumbra. ⋯ In particular, given the dualistic role of distinct components of both the innate and adaptive arms of the immune system, a strategic intervention should be aimed at establishing the right equilibrium between inflammatory and reparative mechanisms, taking into consideration their spatio-temporal recruitment after the ischemic insult. Thus, the application of immunomodulatory drugs and their ability to ameliorate outcomes deserve validation in patients with acute ischemic stroke.
-
Frontiers in neuroscience · Jan 2018
ReviewDeep Brain Stimulation: A Potential Treatment for Dementia in Alzheimer's Disease (AD) and Parkinson's Disease Dementia (PDD).
Damage to memory circuits may lead to dementia symptoms in Alzheimer's disease (AD) and Parkinson's disease dementia (PDD). Recently, deep brain stimulation (DBS) has been shown to be a novel means of memory neuromodulation when critical nodes in the memory circuit are targeted, such as the nucleus basalis of Meynert (NBM) and fornix. Potential memory improvements have been observed after DBS in patients with AD and PDD. ⋯ Finally, we discuss the challenges and future of DBS for the treatment of AD and PDD. We include the latest research results from Gratwicke et al. (2017) and compare them with the results of previous relevant studies, and this would be a worthy update of the literature on DBS for dementia. In addition, we hypothesize that the differences between AD and PDD may ultimately lead to different results following DBS treatment.
-
Frontiers in neuroscience · Jan 2018
ReviewReview of the Neural Oscillations Underlying Meditation.
Objective: Meditation is one type of mental training that has been shown to produce many cognitive benefits. Meditation practice is associated with improvement in concentration and reduction of stress, depression, and anxiety symptoms. Furthermore, different forms of meditation training are now being used as interventions for a variety of psychological and somatic illnesses. ⋯ Gamma activity in these meditation practices is similar in frontal regions, but increases are variable in parietal and occipital regions. Conclusions: The current literature suggests distinct differences in neural oscillatory activity among FA, OM, TM, and LK meditation practices. Further characterizing these oscillatory changes may better elucidate the cognitive and therapeutic effects of specific meditation practices, and potentially lead to the development of novel neuromodulation targets to take advantage of their benefits.