Frontiers in neuroscience
-
Frontiers in neuroscience · Jan 2018
ReviewThe Role of Magnetoencephalography in the Early Stages of Alzheimer's Disease.
The ever increasing proportion of aged people in modern societies is leading to a substantial increase in the number of people affected by dementia, and Alzheimer's Disease (AD) in particular, which is the most common cause for dementia. Throughout the course of the last decades several different compounds have been tested to stop or slow disease progression with limited success, which is giving rise to a strong interest toward the early stages of the disease. Alzheimer's disease has an extended an insidious preclinical stage in which brain pathology accumulates slowly until clinical symptoms are observable in prodromal stages and in dementia. ⋯ However, although its clinical relevance in dementia is still limited, a growing number of studies highlighted its sensitivity in these preclinical stages. Studies focusing on different analytical approaches will be reviewed. Furthermore, their potential applications to establish early diagnosis and determine subsequent progression to dementia are discussed.
-
Frontiers in neuroscience · Jan 2018
Effects of Non-invasive Neuromodulation on Executive and Other Cognitive Functions in Addictive Disorders: A Systematic Review.
Background: In order to improve the current treatment of addictive disorders non-invasive neuromodulation over the dorsolateral prefrontal cortex (DLPFC) has gained attention. The DLPFC is crucially involved in executive functioning, functions which are related to the course of addictive disorders. Non-invasive stimulation of the DLPFC may lead to changes in executive functioning. ⋯ Nevertheless, the results of these studies are promising in light of improvement of current treatment. Therefore, we recommend future studies that compare the effect of different types of stimulation, stimulation sides and number of stimulation sessions in larger clinical trials. This will significantly increase the comparability of the studies and thereby accelerate and clarify the conclusion on whether non-invasive neuromodulation is an effective add-on treatment for substance dependence.
-
Frontiers in neuroscience · Jan 2018
Resting State Vagally-Mediated Heart Rate Variability Is Associated With Neural Activity During Explicit Emotion Regulation.
Resting state vagally mediated heart rate variability (vmHRV) is related to difficulties in emotion regulation (ER). The prefrontal cortex (PFC) provides inhibitory control over the amygdala during ER. Previous studies linked vmHRV with activity in the ventromedial PFC (vmPFC) during implicit ER. ⋯ In participants with high vmHRV amygdala activity was modulated only when using reappraisal and for low vmHRV participants only when using response modulation. Similar, dorsomedial PFC activity in high vmHRV participants was increased when using reappraisal and in low vmHRV participants when using response modulation to regulate unpleasant emotions. These results suggest that individuals with low vmHRV might have difficulties in recruiting prefrontal brain areas necessary for the modulation of amygdala activity during explicit ER.
-
Frontiers in neuroscience · Jan 2018
Sex-Specific Associations Between Inter-Individual Differences in Heart Rate Variability and Inter-Individual Differences in Emotion Regulation.
Neurobiological theories suggest that inter-individual differences in vagally mediated heart rate variability (vmHRV) have the potential to serve as a biomarker for inter-individual differences in emotion regulation that are due to inter-individual differences regarding the engagement of prefrontal and (para-)limbic brain regions during emotion processing. To test these theories, we investigated whether inter-individual differences in vmHRV would be associated with inter-individual differences in emotion regulation. We determined resting state vmHRV in a sample of 176 individuals that had also completed a short self-report measure of reappraisal and suppression use. ⋯ However, this association was only evident among male but not female participants, indicating a sex-specific association between inter-individual differences in resting state vmHRV and inter-individual differences in self-reported emotion regulation. These findings, which are consistent with previous ones, support theoretical claims that inter-individual differences in vmHRV serve as a biomarker for inter-individual differences in emotion regulation. Combing (ultra-)short-term measures of resting state vmHRV with short self-report measures of emotion regulation may, thus, be useful for researchers who have to investigate the neurobiological mechanisms of emotion regulation in a time- and resource-efficient manner.
-
Frontiers in neuroscience · Jan 2018
Insulin Confers Differing Effects on Neurite Outgrowth in Separate Populations of Cultured Dorsal Root Ganglion Neurons: The Role of the Insulin Receptor.
Apart from its pivotal role in the regulation of carbohydrate metabolism, insulin exerts important neurotrophic and neuromodulator effects on dorsal root ganglion (DRG) neurons. The neurite outgrowth-promoting effect is one of the salient features of insulin's action on cultured DRG neurons. Although it has been established that a significant population of DRG neurons express the insulin receptor (InsR), the significance of InsR expression and the chemical phenotype of DRG neurons in relation to the neurite outgrowth-promoting effect of insulin has not been studied. ⋯ However, the responsiveness of DRG neurons expressing the InsR was superior to populations of DRG neurons which lack this receptor. The findings also revealed that besides the expression of the InsR, inherent properties of peptidergic, but not non-peptidergic nociceptive neurons may also significantly contribute to the mechanisms of neurite outgrowth of DRG neurons. These observations suggest distinct regenerative propensity for differing populations of DRG neurons which is significantly affected through insulin receptor signaling.