Frontiers in neuroscience
-
Frontiers in neuroscience · Jan 2019
Attenuation of Pain Perception Induced by the Rubber Hand Illusion.
Adaptive behavior usually requires accurate representations of body positions and ownership, which rely on integration of multiple sources of sensory information. The rubber hand illusion (RHI) presents a compelling example demonstrating that the combination of visual and tactile signals strongly influences the subjective experience of body ownership. However, it still remains unclear how the perception of body ownership in turn alters other aspects of sensory processing, such as pain perception. ⋯ Results showed that pain ratings were significantly lower under the synchronous condition than those under the other two conditions, suggesting the RHI could induce a significant analgesic effect. Furthermore, the correlation analysis showed that the degree of the analgesic effect was positively correlated with the RHI strength across individuals. Taken together, these results suggest an analgesic effect of the RHI and support the potential usage of visual illusions in future translational research on pain.
-
Frontiers in neuroscience · Jan 2019
ReviewCD200-CD200R Interaction: An Important Regulator After Stroke.
The high mortality and morbidity rate of stroke is a chronic problem that plagues human society. The activation of microglia is one of the principal reasons why neuroinflammation induces cerebral dysfunction. Because of their vital functions in the regulation of neuroinflammation, microglia constitute an important target for stroke. ⋯ The role of crosstalk of CD200-CD200R inhibitory immune ligand receptors in immune regulation will also be illustrated. Thus, we will see how poststroke injury can be influenced by the CD200-CD200R crosstalk. Finally, we will discuss the possibility of clinical application of the result of CD200-CD200R interaction to manage neuroinflammatory injury after stroke.
-
Frontiers in neuroscience · Jan 2019
ReviewVagus Nerve Stimulation in Rodent Models: An Overview of Technical Considerations.
Over the last several decades, vagus nerve stimulation (VNS) has evolved from a treatment for select neuropsychiatric disorders to one that holds promise in treating numerous inflammatory conditions. Growing interest has focused on the use of VNS for other indications, such as heart failure, rheumatoid arthritis, inflammatory bowel disease, ischemic stroke, and traumatic brain injury. ⋯ In this review, we discuss these important considerations and how a combination of clinically relevant stimulation parameters can be used to achieve beneficial therapeutic results in pre-clinical studies of sub-acute to chronic VNS, and provide a practical guide for performing this work in rodent models. Finally, by integrating clinical and pre-clinical research, we present indeterminate issues as opportunities for future research.
-
Frontiers in neuroscience · Jan 2019
Brain Map of Intrinsic Functional Flexibility in Anesthetized Monkeys and Awake Humans.
Emerging neuroimaging studies emphasize the dynamic organization of spontaneous brain activity in both human and non-human primates, even under anesthesia. In a recent study, we were able to characterize the heterogeneous architecture of intrinsic functional flexibility in the awake, resting human brain using time-resolved analysis and a probabilistic model. However, it is unknown whether this organizational principle is preserved in the anesthetized monkey brain, and how anesthesia affects dynamic and static measurements of spontaneous brain activity. ⋯ Our findings indicate that the heterogeneous architecture of intrinsic functional flexibility across cortex probably reflects an evolutionarily conserved aspect of functional brain organization, which persists across levels of cognitive processing (states of consciousness). The coupling between nodal entropy for the distribution of dynamic functional connectivity patterns and static functional connectivity strength may serve as a potential signature of anesthesia. This study not only offers fresh insight into the evolution of brain functional architecture, but also advances our understanding of the dynamics of spontaneous brain activity.
-
Frontiers in neuroscience · Jan 2019
Differential tDCS and tACS Effects on Working Memory-Related Neural Activity and Resting-State Connectivity.
Transcranial direct and alternating current stimulation (tDCS and tACS, respectively) entail capability to modulate human brain dynamics and cognition. However, the comparability of these approaches at the level of large-scale functional networks has not been thoroughly investigated. In this study, 44 subjects were randomly assigned to receive sham (N = 15), tDCS (N = 15), or tACS (N = 14). ⋯ In sum, tDCS and tACS modulate fMRI-derived network dynamics differently. However, both effects seem to focus on DMN regions and the WM network-DMN shift, which are highly affected in aging and disease. Thus, albeit exploratory and needing further replication with larger samples, our results might provide a refined understanding of how the DMN functioning can be externally modulated through commonly used non-invasive brain stimulation techniques, which may be of eventual clinical relevance.