Frontiers in immunology
-
Frontiers in immunology · Jan 2018
ReviewClustered Regularly Interspaced Short Palindromic Repeats/Cas9 Gene Editing Technique in Xenotransplantation.
Genetically modified pigs have been considered favorable resources in xenotransplantation. Microinjection of randomly integrating transgenes into zygotes, somatic cell nuclear transfer, homologous recombination, zinc finger nucleases, transcription activator-like effector nucleases, and most recently, clustered regularly interspaced short palindromic repeats-cas9 (CRISPR/Cas9) are the techniques that have been used to generate these animals. Here, we provide an overview of the CRISPR approaches that have been used to modify genes which are vital in improving xenograft survival rate, including cytidine monophosphate-N-acetylneuraminic acid hydroxylase, B1,4N-acetylgalactosaminyltransferase, isoglobotrihexosylceramide synthase, class I MHC, von Willebrand factor, C3, and porcine endogenous retroviruses. In addition, we will mention the importance of potential candidate genes which could be targeted using CRISPR/Cas9.
-
Frontiers in immunology · Jan 2018
Low-Dose Mycophenolate Mofetil for Treatment of Neuromyelitis Optica Spectrum Disorders: A Prospective Multicenter Study in South China.
Objective: To evaluate the efficacy and safety of low-dose mycophenolate mofetil (MMF, 1,000 mg/day) treatment of neuromyelitis optica spectrum disorders (NMOSDs). Methods: This study was a multicenter, open, prospective, follow-up clinical trial. The data include retrospective clinical data from the pretreatment phase and prospective data from the post-treatment phase. ⋯ Fourteen (16%) of the total patients discontinued MMF after our last follow-up for various reasons and switched to azathioprine or rituximab. Conclusion: Low-dose MMF reduced clinical relapse and disability in NMOSD patients in South China. However, some patients still suffered from adverse events at this dosage.
-
Frontiers in immunology · Jan 2018
The cGas-Sting Signaling Pathway Is Required for the Innate Immune Response Against Ectromelia Virus.
Activation of the DNA-dependent innate immune pathway plays a pivotal role in the host defense against poxvirus. Cyclic GMP-AMP synthase (cGAS) is a key cytosolic DNA sensor that produces the cyclic dinucleotide cGMP-AMP (cGAMP) upon activation, which triggers stimulator of interferon genes (STING), leading to type I Interferons (IFNs) production and an antiviral response. Ectromelia virus (ECTV) has emerged as a valuable model for investigating the host-Orthopoxvirus relationship. ⋯ Disruption of cGas or Sting expression in mouse macrophages blocked the type I IFN production and facilitated ECTV replication. Consistently, mice deficient in cGas or Sting exhibited lower type I IFN levels and higher viral loads, and are more susceptible to mousepox. Collectively, our study indicates that the cGas-Sting pathway is critical for sensing of ECTV infection, inducing the type I IFN production, and controlling ECTV replication.
-
Frontiers in immunology · Jan 2018
Granulocytic Myeloid-Derived Suppressor Cells (GR-MDSC) in Breast Milk (BM); GR-MDSC Accumulate in Human BM and Modulate T-Cell and Monocyte Function.
Nosocomial bacterial infections (NBI) and necrotizing enterocolitis (NEC) are among the main reasons for death in preterm infants. Both are often caused by bacteria coming from the infected infant's gut and feeding with breast milk (BM) seems beneficial in their pathogenesis. However, mechanisms causing the protective effect of BM are only incompletely understood. ⋯ Furthermore, we found that the lactotrophic hormones prolactin and oxytocin do not induce MDSC from peripheral blood. This is the first study to describe MDSC with immune-modulatory properties in human BM. Our results point toward a role for MDSC in local immune modulation in the gut possibly protecting infants from NBI and NEC.
-
Frontiers in immunology · Jan 2018
Myeloid-Derived Suppressor Cells Specifically Suppress IFN-γ Production and Antitumor Cytotoxic Activity of Vδ2 T Cells.
γδ T cells represent less than 5% of circulating T cells; they exert a potent cytotoxic function against tumor or infected cells and secrete cytokines like conventional αβ T cells. As αβ T cells γδ T cells reside in the typical T cell compartments (the lymph nodes and spleen), but are more widely distributed in tissues throughout the body. For these reasons, some investigators are exploring the possibility of immunotherapies aimed to expand and activate Vδ2 T cells, or using them as Chimeric Antigen Receptor carriers. ⋯ Moreover, the Vδ2 T cells cytotoxic activity against the Burkitt lymphoma cell line Daudi and Jurkat cell line were impaired by MDSC. The Arginase I seems to be involved in the impairment of Vδ2 T cell function induced by both tumor cells and MDSC. These data open a key issue in the context of Vδ2-targeted immunoteraphy, suggesting the need of combined strategies aimed to boost Vδ2 T cells circumventing tumor- and MDSC-induced Vδ2 T cells suppression.