Frontiers in immunology
-
Frontiers in immunology · Jan 2020
ReviewA Review of the Progress and Challenges of Developing a Vaccine for COVID-19.
A novel coronavirus, which has been designated as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was first detected in December 2019 in Wuhan China and causes the highly infectious disease referred to as COVID-19. COVID-19 has now spread worldwide to become a global pandemic affecting over 24 million people as of August 26th, 2020 and claimed the life of more than 800,000 people worldwide. COVID-19 is asymptomatic for some individuals and for others it can cause symptoms ranging from flu-like to acute respiratory distress syndrome (ARDS), pneumonia and death. ⋯ This review will focus on the eight vaccine candidates that entered Phase 1 clinical trials in mid-May, including AstraZeneca/Oxford's AZD1222, Moderna's mRNA-1273 and Sinovac's CoronaVac vaccines, which are currently in advanced stages of vaccine development. In addition to reviewing the different stages of vaccine development, vaccine platforms and vaccine candidates, this review also discusses the biological and immunological basis required of a SARS-CoV-2 vaccine, the importance of a collaborative international effort, the ethical implications of vaccine development, the efficacy needed for an immunogenic vaccine, vaccine coverage, the potential limitations and challenges of vaccine development. Although the demand for a vaccine far surpasses the production capacity, it will be beneficial to have a limited number of vaccines available for the more vulnerable population by the end of 2020 and for the rest of the global population by the end of 2021.
-
With the onset of the global pandemic in 2020 of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), there has been increasing research activity around certain disease-modifying drugs that are used for the management of inflammatory disorders such as rheumatoid arthritis, spondyloarthrosis, psoriatic arthritis, systemic lupus erythematosus, and inflammatory bowel disease for managing coronavirus symptoms. In the conditions mentioned, many people are on long-term treatment with agents including hydroxychloroquine, tumor necrosis factor alpha (TNFα) inhibitor drugs, other biologic agents such as monoclonal antibodies to IL-6 and Janus kinase inhibitors including baricitinib and tofacitinib, which are used to control inflammatory responses in their respective auto-immune condition. There is emerging data that immunomodulatory drugs could be protective at reducing certain features of SARS-CoV-2 and improving recovery. ⋯ There is a huge unmet clinical need to advise patients responsibly about whether they should remain on their immunomodulatory treatment or not in light of Covid-19 infection. In this article we will discuss potential treatment options for SARS-CoV-2 using immunomodulatory drugs and at what stage of the condition they may be beneficial. Viable treatment options during the global coronavirus pandemic are a much-needed and an intensely active area of research.
-
Frontiers in immunology · Jan 2020
ReviewSARS-CoV-2: Immune Response Elicited by Infection and Development of Vaccines and Treatments.
The World Health Organization (WHO) announced in March a pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). This new infectious disease was named Coronavirus Disease 19 (COVID-19), and at October 2020, more than 39,000,000 cases of SARS-CoV-2 have been detected worldwide leading to near 1,100,000 deaths. Clinically, COVID-19 is characterized by clinical manifestations, such as fever, dry cough, headache, and in more severe cases, respiratory distress. ⋯ Moreover, monoclonal antibody therapy is also under development to neutralize the virus and prevent infection. In this article, we describe the clinical manifestations and the immunological information available about COVID-19 disease. Furthermore, we discuss current therapies under study and the development of vaccines to prevent this disease.
-
Coronaviruses were first discovered in the 1960s and are named due to their crown-like shape. Sometimes, but not often, a coronavirus can infect both animals and humans. An acute respiratory disease, caused by a novel coronavirus (severe acute respiratory syndrome coronavirus-2 or SARS-CoV-2 previously known as 2019-nCoV) was identified as the cause of coronavirus disease 2019 (COVID-19) as it spread throughout China and subsequently across the globe. ⋯ The early recognition of this immunological phenotype could assist prompt recognition of patients who will progress to severe disease. Here we review the data of the immune response during COVID-19 infection. The current review summarizes our understanding of how immune dysregulation and altered cytokine networks contribute to the pathophysiology of COVID-19 patients.
-
Frontiers in immunology · Jan 2020
ReviewInnate Immune Responses to Highly Pathogenic Coronaviruses and Other Significant Respiratory Viral Infections.
The new pandemic virus SARS-CoV-2 emerged in China and spread around the world in <3 months, infecting millions of people, and causing countries to shut down public life and businesses. Nearly all nations were unprepared for this pandemic with healthcare systems stretched to their limits due to the lack of an effective vaccine and treatment. Infection with SARS-CoV-2 can lead to Coronavirus disease 2019 (COVID-19). ⋯ Details regarding mechanisms of viral entry via the respiratory system and immune system correlates of protection or pathogenesis have not been fully elucidated. Here, we provide an overview of the innate immune responses in the lung to the coronaviruses MERS-CoV, SARS-CoV, and SARS-CoV-2. This review provides insight into key innate immune mechanisms that will aid in the development of therapeutics and preventive vaccines for SARS-CoV-2 infection.