Frontiers in immunology
-
Frontiers in immunology · Jan 2020
ReviewHow to Combine the Two Landmark Treatment Methods-Allogeneic Hematopoietic Stem Cell Transplantation and Chimeric Antigen Receptor T Cell Therapy Together to Cure High-Risk B Cell Acute Lymphoblastic Leukemia?
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) has made tremendous progress in the last few decades and is increasingly being used worldwide. The success of haploidentical HSCT has made it possible to have "a donor for everyone". Patients who received transplantation in remission may have a favorable outcome, while those who were transplanted in advanced stages of disease have a poor prognosis. ⋯ Therefore, combining these two approaches (allo-HSCT and CAR-T cell therapy) is an attractive area of research to further improve the prognosis of R/R B-ALL. In this review, we will discuss the current clinical practices of combining allo-HSCT with CAR-T cell therapy based on available data, including CAR-T cells as a bridge to allo-HSCT for R/R B-ALL and CAR-T cell infusion for post-transplant relapse. We will further explore not only other possible ways to combine the two approaches, including CAR-T cell therapy to clear minimal residual disease peri-transplantation and incorporation of CAR technology to treat graft-versus-host disease, but also the potential of CAR-T cells as a part of allo-HSCT.
-
Frontiers in immunology · Jan 2020
MicroRNA-200a Inhibits Inflammation and Atherosclerotic Lesion Formation by Disrupting EZH2-Mediated Methylation of STAT3.
Endothelial inflammation and dysfunction are critical to the process of atherosclerosis. Emerging evidence demonstrates that upregulation of miR-200a reduces VCAM-1 expression and prevents monocytic cell adhesion onto the aortic endothelium. However, limited information is available about the role of microRNA-200a (miR-200a) in facilitating atherosclerotic lesion formation. ⋯ EZH2 methylated STAT3 and enhanced STAT3 activity by increased tyrosine phosphorylation of STAT3, thereby increasing apoptosis and release of pro-inflammatory cytokines in ox-LDL-treated HUVECs. An anti-atherosclerotic role of miR-200a was also demonstrated in atherosclerotic mouse models. Our study demonstrates that miR-200a has anti-inflammatory and anti-atherosclerotic activities dependent on the EZH2/STAT3 signaling cascade.
-
COVID-19 is a rapidly spreading global threat that has been declared as a pandemic by the WHO. COVID-19 is transmitted via droplets or direct contact and infects the respiratory tract resulting in pneumonia in most of the cases and acute respiratory distress syndrome (ARDS) in about 15 % of the cases. ⋯ Excessive production of proinflammatory cytokines leads to ARDS aggravation and widespread tissue damage resulting in multi-organ failure and death. Targeting cytokines during the management of COVID-19 patients could improve survival rates and reduce mortality.
-
Frontiers in immunology · Jan 2020
ReviewNeurotoxicity and Cytokine Release Syndrome After Chimeric Antigen Receptor T Cell Therapy: Insights Into Mechanisms and Novel Therapies.
Chimeric antigen receptor T (CART) cell immunotherapy has been remarkably successful in treating certain relapsed/refractory hematological cancers. However, CART cell therapy is also associated with toxicities which present an obstacle to its wider adoption as a mainstay for cancer treatment. ⋯ New insights into the mechanisms of these toxicities have spurred novel treatment options. In this review, we summarize the available literature on the clinical manifestations, mechanisms, and treatments of CART-associated CRS and ICANS.
-
Frontiers in immunology · Jan 2020
ReviewMitigating Coronavirus Induced Dysfunctional Immunity for At-Risk Populations in COVID-19: Trained Immunity, BCG and "New Old Friends".
The novel, highly contagious coronavirus SARS-CoV-2 spreads rapidly throughout the world, leading to a deadly pandemic of a predominantly respiratory illness called COVID-19. Safe and effective anti-SARS-CoV-2 vaccines are urgently needed. ⋯ Animal data from earlier coronavirus vaccine efforts indicate that elderly people, most at risk from severe COVID-19 disease, could be especially at risk from immunopathologic responses to novel coronavirus vaccines. Bacterial "new old friends" such as Bacille Calmette-Guérin (BCG) or Mycobacterium obuense have the ability to elevate basal systemic levels of type 1 cytokines and immune cells, correlating with increased protection against diverse and unrelated infectious agents, called "trained immunity." Here we describe dysfunctional immune responses induced by coronaviruses, representing potentially difficult to overcome obstacles to safe, effective vaccine development for COVID-19, and outline how trained immunity could help protect high risk populations through immunomodulation with BCG and other "new old friends."