Frontiers in immunology
-
Frontiers in immunology · Jan 2018
Analysis of Serum Interleukin (IL)-1β and IL-18 in Systemic Lupus Erythematosus.
Systemic lupus erythematosus (SLE) is a chronic multisystem autoimmune disease characterized by biological and clinical heterogeneity. The interleukin (IL)-1 superfamily is a group of innate cytokines that contribute to pathogenesis in many autoimmune diseases. IL-1β and IL-18 are two members that have been shown to play a role in murine lupus-like models, but their role in human SLE remains poorly understood. ⋯ High baseline serum IL-18 levels were associated with organ damage at the subsequent visit. Serum IL-1β levels were not significantly elevated in SLE patients when compared to HCs and had no association with overall or organ-specific disease activity or organ damage in cross-sectional and longitudinal analyses. Our data suggest that serum IL-18 and IL-1β have different clinical implications in SLE, with IL-18 being potentially associated with active renal disease.
-
Frontiers in immunology · Jan 2018
Case ReportsTreating Heart Inflammation With Interleukin-1 Blockade in a Case of Erdheim-Chester Disease.
Pericarditis is an inflammatory heart disease, which may be idiopathic or secondary to autoimmune or auto-inflammatory diseases and often leads to severe or life-threatening complications. Colchicine and non-steroidal anti-inflammatory drugs represent the mainstay of treatment, whereas use of corticosteroids is associated with recurrence of disease flares. While effective and safe anti-inflammatory therapies remain an unmet clinical need, emerging clinical and experimental evidence points at a promising role of inhibition of the pro-inflammatory cytokine interleukin-1 (IL-1). ⋯ Anakinra was maintained as monotherapy, and the patient remained asymptomatic in the absence of disease flares for the following year. Recent studies point at inhibition of IL-1 activity as an attractive treatment option for patients with refractory idiopathic recurrent pericarditis. Anakinra treatment may also have a role in patients with pericarditis in the setting of systemic inflammatory disorders, such as ECD.
-
Frontiers in immunology · Jan 2018
Differential Mechanisms of Septic Human Pulmonary Microvascular Endothelial Cell Barrier Dysfunction Depending on the Presence of Neutrophils.
Sepsis is characterized by injury of pulmonary microvascular endothelial cells (PMVEC) leading to barrier dysfunction. Multiple mechanisms promote septic PMVEC barrier dysfunction, including interaction with circulating leukocytes and PMVEC apoptotic death. Our previous work demonstrated a strong correlation between septic neutrophil (PMN)-dependent PMVEC apoptosis and pulmonary microvascular albumin leak in septic mice in vivo; however, this remains uncertain in human PMVEC. ⋯ Moreover, inhibition of caspase 3, 8, or 9 in PMN-PMVEC cocultures also reduced septic PMVEC barrier dysfunction whereas inhibition of caspase 1 had no effect. Our data demonstrate that human PMVEC barrier dysfunction under septic conditions in vitro (cytomix stimulation) is clearly caspase-dependent, but the mechanism differs depending on the presence of PMN. In isolated PMVEC, apoptosis contributes to septic barrier dysfunction, whereas PMN presence enhances caspase-dependent septic PMVEC barrier dysfunction independently of PMVEC apoptosis.
-
Frontiers in immunology · Jan 2018
Autoantibodies May Predict Immune-Related Toxicity: Results from a Phase I Study of Intralesional Bacillus Calmette-Guérin followed by Ipilimumab in Patients with Advanced Metastatic Melanoma.
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of advanced melanoma. The first ICI to demonstrate clinical benefit, ipilimumab, targets cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4); however, the long-term overall survival is just 22%. More than 40 years ago intralesional (IL) bacillus Calmette-Guérin (BCG), a living attenuated strain of Mycobacterium bovis, was found to induce tumor regression by stimulating cell-mediated immunity following a localized and self-limiting infection. ⋯ While the small patient numbers in this trial do not allow for any conclusive evidence of predictive biomarkers, the observed changes warrant further examination of autoantibody repertoires in larger patient cohorts at risk of developing irAEs during their course of treatment. In summary, dose escalation of IL BCG followed by ipilimumab therapy was not well tolerated in advanced melanoma patients and showed no evidence of clinical benefit. Measuring autoantibody responses may provide early means for identifying patients at risk from developing severe irAEs during cancer immunotherapy.
-
Frontiers in immunology · Jan 2018
The C-Type Lectin Receptor DC-SIGN Has an Anti-Inflammatory Role in Human M(IL-4) Macrophages in Response to Mycobacterium tuberculosis.
DC-SIGN (CD209/CLEC4L) is a C-type lectin receptor (CLR) that serves as a reliable cell-surface marker of interleukin 4 (IL-4)-activated human macrophages [M(IL-4)], which historically represent the most studied subset within the M2 spectrum of macrophage activation. Although DC-SIGN plays important roles in Mycobacterium tuberculosis (Mtb) interactions with dendritic cells, its contribution to the Mtb-macrophage interaction remains poorly understood. Since high levels of IL-4 are correlated with tuberculosis (TB) susceptibility and progression, we investigated the role of DC-SIGN in M(IL-4) macrophages in the TB context. ⋯ We also found that inactivation of DC-SIGN renders M(IL-4) macrophages less permissive to Mtb intracellular growth compared to control cells, despite the equal level of bacteria uptake. Last, at the molecular level, we show that DC-SIGN interferes negatively with the pro-inflammatory response and control of Mtb intracellular growth mediated by another CLR, Dectin-1 (CLEC7A). Collectively, this study highlights a dual role for DC-SIGN as, on the one hand, being a host factor granting advantage for Mtb to parasitize macrophages and, on the other hand, representing a molecular switch to turn off the pro-inflammatory response in these cells to prevent potential immunopathology associated to TB.