Biochimica et biophysica acta
-
Biochim. Biophys. Acta · Jun 2015
ReviewAdvances in Phos-tag-based methodologies for separation and detection of the phosphoproteome.
This review article describes analytical techniques based on the phosphate-binding tag molecule "Phos-tag", which is an alkoxide-bridged dinuclear metal complex with 1,3-bis(pyridin-2-ylmethylamino)propan-2-olate, for studying the protein phosphorylome. The dinuclear zinc(II) complex forms a stable 1:1 complex with a phosphate monoester dianion in an aqueous solution under conditions of neutral pH. By using a series of functional Phos-tag derivatives, our group has developed novel techniques that are useful in studies on kinomics and phosphoproteomics. ⋯ Conventional mass spectrometry-based shotgun techniques used in phosphoproteomics detect the phosphorylation modification of proteins in peptide fragments, whereas the Phos-tag electrophoresis technique permits the direct analysis of the phosphorylation status of full-length proteins. The technique therefore provides a greater understanding of the detailed properties of particular proteins involved in specific physiological and pathological events. This article is part of a Special Issue entitled: Medical Proteomics.
-
Biochim. Biophys. Acta · Jun 2015
Functional GIP receptors play a major role in islet compensatory response to high fat feeding in mice.
Consumption of high fat diet and insulin resistance induce significant changes in pancreatic islet morphology and function essential for maintenance of normal glucose homeostasis. We have used incretin receptor null mice to evaluate the role of gastric inhibitory polypeptide (GIP) in this adaptive response. ⋯ These data suggest that GIP released from islet alpha-cells and intestinal K-cells plays an important role in islet adaptations to high fat feeding.
-
Biochim. Biophys. Acta · May 2015
Effects of 5α-cholestan-3-one on the synaptic vesicle cycle at the mouse neuromuscular junction.
We have investigated the effects of 5α-cholesten-3-one (5Ch3, 200 nM) on synaptic transmission in mouse diaphragm. 5Ch3 had no impact on the amplitude or frequency of miniature endplate currents (MEPCs, spontaneous secretion), but decreased the amplitude of EPCs (evoked secretion) triggered by single action potentials. Treatment with 5Ch3 increased the depression of EPC amplitude and slowed the unloading of the dye FM1-43 from synaptic vesicles (exocytosis rate) during high-frequency stimulation. The estimated recycling time of vesicles did not change, suggesting that the decline of synaptic efficiency was due to the reduction in the size of the population of vesicles involved in release. ⋯ Manipulations of membrane cholesterol (saturation or depletion) strongly reduced the influence of 5Ch3 on both FM1-43 dye unloading and staining with the B-subunit of cholera toxin. Thus, 5Ch3 reduces the number of vesicles which are actively recruited during synaptic transmission and alters membrane properties. These effects of 5Ch3 depend on membrane cholesterol.
-
Biochim. Biophys. Acta · Apr 2015
ReviewMarine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance.
Inflammation is a condition which contributes to a range of human diseases. It involves a multitude of cell types, chemical mediators, and interactions. Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are omega-3 (n-3) fatty acids found in oily fish and fish oil supplements. ⋯ Animal experiments demonstrate benefit from marine n-3 fatty acids in models of rheumatoid arthritis (RA), inflammatory bowel disease (IBD) and asthma. Clinical trials of fish oil in RA demonstrate benefit, but clinical trials of fish oil in IBD and asthma are inconsistent with no overall clear evidence of efficacy. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".
-
Biochim. Biophys. Acta · Apr 2015
ReviewMyotonic dystrophies: An update on clinical aspects, genetic, pathology, and molecular pathomechanisms.
Myotonic dystrophy (DM) is the most common adult muscular dystrophy, characterized by autosomal dominant progressive myopathy, myotonia and multiorgan involvement. To date two distinct forms caused by similar mutations have been identified. Myotonic dystrophy type 1 (DM1, Steinert's disease) is caused by a (CTG)n expansion in DMPK, while myotonic dystrophy type 2 (DM2) is caused by a (CCTG)n expansion in ZNF9/CNBP. ⋯ Despite clinical and genetic similarities, DM1 and DM2 are distinct disorders requiring different diagnostic and management strategies. This review is an update on the recent advances in the understanding of the molecular mechanisms behind myotonic dystrophies. This article is part of a Special Issue entitled: Neuromuscular Diseases: Pathology and Molecular Pathogenesis.