Biochimica et biophysica acta
-
Biochim. Biophys. Acta · Feb 2014
Redox-optimized ROS balance and the relationship between mitochondrial respiration and ROS.
The Redox-Optimized ROS Balance [R-ORB] hypothesis postulates that the redox environment [RE] is the main intermediary between mitochondrial respiration and reactive oxygen species [ROS]. According to R-ORB, ROS emission levels will attain a minimum vs. RE when respiratory rate (VO2) reaches a maximum following ADP stimulation, a tenet that we test herein in isolated heart mitochondria under forward electron transport [FET]. ⋯ We conclude that under non-stressful conditions mitochondrial ROS efflux decreases when the RE becomes less reduced within a range in which VO2 is maximal. These results agree with the R-ORB postulate that mitochondria minimize ROS emission as they maximize VO2 and ATP synthesis. This relationship is altered quantitatively, but not qualitatively, by oxidative stress although stressed mitochondria exhibit diminished energetic performance and increased ROS release.
-
Biochim. Biophys. Acta · Jan 2014
Complement inhibition and statins prevent fetal brain cortical abnormalities in a mouse model of preterm birth.
Premature babies are particularly vulnerable to brain injury. In this study we focus on cortical brain damage associated with long-term cognitive, behavioral, attentional or socialization deficits in children born preterm. Using a mouse model of preterm birth (PTB), we demonstrated that complement component C5a contributes to fetal cortical brain injury. ⋯ Simvastatin and pravastatin prevented cortical fetal brain developmental and metabolic abnormalities -in vivo and in vitro. Neuroprotective effects of statins were mediated by Akt/PKB signaling pathways. This study shows that complement activation plays a crucial role in cortical fetal brain injury in PTL and suggests that complement inhibitors and statins might be good therapeutic options to improve neonatal outcomes in preterm birth.
-
Biochim. Biophys. Acta · Jan 2014
Genistein stimulates fatty acid oxidation in a leptin receptor-independent manner through the JAK2-mediated phosphorylation and activation of AMPK in skeletal muscle.
Obesity is a public health problem that contributes to the development of insulin resistance, which is associated with an excessive accumulation of lipids in skeletal muscle tissue. There is evidence that soy protein can decrease the ectopic accumulation of lipids and improves insulin sensitivity; however, it is unknown whether soy isoflavones, particularly genistein, can stimulate fatty acid oxidation in the skeletal muscle. Thus, we studied the mechanism by which genistein stimulates fatty acid oxidation in the skeletal muscle. ⋯ Furthermore, the genistein-mediated AMPK phosphorylation occurred via JAK2, which was possibly activated through a mechanism that involved cAMP. Additionally, the genistein-mediated induction of fatty acid oxidation genes involved PGC1α and PPARδ. As a result, we observed that genistein increased fatty acid oxidation in both the control and silenced C2C12 myotubes, as well as a decrease in the RER in mice, suggesting that genistein can be used in strategies to decrease lipid accumulation in the skeletal muscle.
-
Biochim. Biophys. Acta · Jan 2014
Anti-inflammatory action of lipid nanocarrier-delivered myriocin: therapeutic potential in cystic fibrosis.
Sphingolipids take part in immune response and can initiate and/or sustain inflammation. Various inflammatory diseases have been associated with increased ceramide content, and pharmacological reduction of ceramide diminishes inflammation damage in vivo. Inflammation and susceptibility to microbial infection are two elements in a vicious circle. Recently, sphingolipid metabolism inhibitors were used to reduce infection. Cystic fibrosis (CF) is characterized by a hyper-inflammation and an excessive innate immune response, which fails to evolve into adaptive immunity and to eradicate infection. Chronic infections result in lung damage and patient morbidity. Notably, ceramide content in mucosa airways is higher in CF mouse models and in patients than in control mice or healthy subjects. ⋯ Myriocin stands as a powerful immunomodulatory agent for inflammatory and infectious diseases.
-
Biochim. Biophys. Acta · Jan 2014
The roles of C-terminal helices of human apolipoprotein A-I in formation of high-density lipoprotein particles.
Apolipoprotein A-I (apoA-I) accepts cholesterol and phospholipids from ATP-binding cassette transporter A1 (ABCA1)-expressing cells to form high-density lipoprotein (HDL). Human apoA-I has two tertiary structural domains and the C-terminal domain (approximately amino acids 190-243) plays a key role in lipid binding. Although the high lipid affinity region of the C-terminal domain of apoA-I (residues 223-243) is essential for the HDL formation, the function of low lipid affinity region (residues 191-220) remains unclear. ⋯ In addition, the ability to form HDL particles in vitro and induce cholesterol efflux from ABCA1-expressing cells of Δ191-220 apoA-I was also intermediate between wild-type and Δ223-243 apoA-I. These results suggest that despite possessing low lipid affinity, residues 191-220 play a role in enhancing the ability of apoA-I to bind to and solubilize lipids by forming α-helix upon lipid interaction. Our results demonstrate that the combination of low lipid affinity region and high lipid affinity region of apoA-I is required for efficient ABCA1-dependent HDL formation.