Biochimica et biophysica acta
-
Biochim. Biophys. Acta · Sep 2016
Disruption of the human COQ5-containing protein complex is associated with diminished coenzyme Q10 levels under two different conditions of mitochondrial energy deficiency.
The Coq protein complex assembled from several Coq proteins is critical for coenzyme Q6 (CoQ6) biosynthesis in yeast. Secondary CoQ10 deficiency is associated with mitochondrial DNA (mtDNA) mutations in patients. We previously demonstrated that carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) suppressed CoQ10 levels and COQ5 protein maturation in human 143B cells. ⋯ The findings elucidate a possible mechanism for mitochondrial dysfunction-induced CoQ10 deficiency in human cells.
-
Biochim. Biophys. Acta · Aug 2016
ReviewGenetic defects in the hexosamine and sialic acid biosynthesis pathway.
Congenital disorders of glycosylation are caused by defects in the glycosylation of proteins and lipids. Classically, gene defects with multisystem disease have been identified in the ubiquitously expressed glycosyltransferases required for protein N-glycosylation. An increasing number of defects are being described in sugar supply pathways for protein glycosylation with tissue-restricted clinical symptoms. ⋯ Future research on the interplay between sugar metabolism and different glycosylation pathways in a tissue- and cell-specific manner will contribute to elucidation of disease mechanisms and will create new opportunities for therapeutic intervention. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
-
Biochim. Biophys. Acta · Aug 2016
ReviewThe promise of protein glycosylation for personalised medicine.
Complex diseases such as cancer are a consequence of numerous causes. State of the art personalised medicine approaches are mostly based on evaluating patients' individual genetic background. Despite the advances of genomics it fails to take individual dynamic influences into account that contribute to the individual and unique glycomic and glycoproteomic "configurations" of every living being. ⋯ There is an urgent need for markers that enable the establishment of an individualised and optimised patient treatment at the earliest disease stage possible. The glycosylation status of a patient and/or specific marker proteins can provide important clues that result in improved patient management. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
-
Biochim. Biophys. Acta · Aug 2016
ReviewHisto-blood group glycans in the context of personalized medicine.
A subset of histo-blood group antigens including ABO and Lewis are oligosaccharide structures which may be conjugated to lipids or proteins. They are known to be important recognition motifs not only in the context of blood transfusions, but also in infection and cancer development. ⋯ Histo-blood group glycans have a unique linking position in the complex network of genes, oncodevelopmental biological processes, and disease mechanisms. Thus, they are highly promising targets for novel approaches in the field of personalized medicine. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
-
Biochim. Biophys. Acta · Aug 2016
ReviewMethods for the absolute quantification of N-glycan biomarkers.
Many treatment options especially for cancer show a low efficacy for the majority of patients demanding improved biomarker panels for patient stratification. Changes in glycosylation are a hallmark of many cancers and inflammatory diseases and show great potential as clinical disease markers. The large inter-subject variability in glycosylation due to hereditary and environmental factors can complicate rapid transfer of glycan markers into the clinical practice but also presents an opportunity for personalized medicine. ⋯ Glycan biomarkers have a huge potential as disease markers for personalized medicine. The use of stable isotope labeled glycans as internal standards and heavy-isotope labeling methods will provide the necessary method precision and robustness acceptable for clinical use. This article is part of a Special Issue entitled "Glycans in personalized medicine" Guest Editor: Professor Gordan Lauc.