Biochimica et biophysica acta
-
Biochim. Biophys. Acta · Dec 2012
Neuroglobin involvement in respiratory chain function and retinal ganglion cell integrity.
Neuroglobin is a member of the globin superfamily expressed in vertebrate brain and retina. The protein is thought to be involved in neuronal protection from hypoxia or oxidative stress and could represent a key element of Alzheimer disease pathogenesis. Our aim was to determine whether neuroglobin could be directly associated with mitochondrial metabolism and integrity. ⋯ Neuroglobin knockdown leads to reduced activities of respiratory chain complexes I and III, degeneration of retinal ganglion cells, and impairment of visual function. The deleterious effect on cell survival was confirmed in primary retinal ganglion cells subjected to inhibition of neuroglobin expression. Hence, neuroglobin should be considered as a novel mitochondrial protein involved in respiratory chain function which is essential for retinal ganglion cell integrity.
-
Biochim. Biophys. Acta · Dec 2012
Mitophagy is triggered by mild oxidative stress in a mitochondrial fission dependent manner.
Mitochondrial dysfunction is linked to apoptosis, aging, cancer, and a number of neurodegenerative and muscular disorders. The interplay between mitophagy and mitochondrial dynamics has been linked to the removal of dysfunctional mitochondria ensuring mitochondrial quality control. An open question is what role mitochondrial fission plays in the removal of mitochondria after mild and transient oxidative stress; conditions reported to result in moderately elevated reactive oxygen species (ROS) levels comparable to physical activity. ⋯ Expression of a dominant-negative variant of the fission factor DRP1 blocked mitophagy induction by mild oxidative stress as well as by starvation. Taken together, we demonstrate that in mammalian cells under mild oxidative stress a DRP1-dependent type of mitophagy is triggered while a concomitant induction of non-selective autophagy was not observed. We propose that these mild oxidative conditions resembling well physiological situations are thus very helpful for studying the molecular pathways governing the selective removal of dysfunctional mitochondria.
-
Biochim. Biophys. Acta · Nov 2012
Autophagy-dependent and -independent involvement of AMP-activated protein kinase in 6-hydroxydopamine toxicity to SH-SY5Y neuroblastoma cells.
The role of the main intracellular energy sensor adenosine monophosphate (AMP)-activated protein kinase (AMPK) in the induction of autophagic response and cell death was investigated in SH-SY5Y human neuroblastoma cells exposed to the dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA). The induction of autophagy in SH-SY5Y cells was demonstrated by acridine orange staining of intracellular acidic vesicles, the presence of autophagosome- and autophagolysosome-like vesicles confirmed by transmission electron microscopy, as well as by microtubule-associated protein 1 light-chain 3 (LC3) conversion and p62 degradation detected by immunoblotting. 6-OHDA induced phosphorylation of AMPK and its target Raptor, followed by the dephosphorylation of the major autophagy inhibitor mammalian target of rapamycin (mTOR) and its substrate p70S6 kinase (S6K). 6-OHDA treatment failed to suppress mTOR/S6K phosphorylation and to increase LC3 conversion, p62 degradation and cytoplasmatic acidification in neuroblastoma cells in which AMPK expression was downregulated by RNA interference. ⋯ Finally, the antioxidant N-acetyl cysteine antagonized 6-OHDA-induced activation of AMPK, p38 and autophagy. These data suggest that oxidative stress-mediated AMPK/mTOR-dependent autophagy and AMPK/p38-dependent apoptosis could be valid therapeutic targets for neuroprotection.
-
Biochim. Biophys. Acta · Oct 2012
Metabolic consequences of NDUFS4 gene deletion in immortalized mouse embryonic fibroblasts.
Human mitochondrial complex I (CI) deficiency is associated with progressive neurological disorders. To better understand the CI pathomechanism, we here studied how deletion of the CI gene NDUFS4 affects cell metabolism. To this end we compared immortalized mouse embryonic fibroblasts (MEFs) derived from wildtype (wt) and whole-body NDUFS4 knockout (KO) mice. ⋯ In contrast, NDUFS4 gene deletion did not detectably alter [NADP(+)]/[NADPH] ratio, cellular glucose consumption, the protein levels of hexokinases (I and II) and phosphorylated pyruvate dehydrogenase (P-PDH), total cellular adenosine triphosphate (ATP) level, free cytosolic [ATP], cell growth rate, and reactive oxygen species (ROS) levels. We conclude that the NDUFS4 subunit is of key importance in CI stabilization and that, due to the metabolic properties of the immortalized MEFs, NDUFS4 gene deletion has only modest effects at the live cell level. This article is part of a special issue entitled: 17th European Bioenergetics Conference (EBEC 2012).
-
Biochim. Biophys. Acta · Sep 2012
ReviewAlternative glycosylation modulates function of IgG and other proteins - implications on evolution and disease.
Nearly all membrane and secreted proteins, as well as numerous intracellular proteins are glycosylated. However, contrary to proteins which are defined by their individual genetic templates, glycans are encoded in a complex dynamic network of hundreds of genes which participate in the complex biosynthetic pathway of protein glycosylation. ⋯ The change in the structure of a protein requires mutations in DNA and subsequent selection in the next generation, while even slight alterations in activity or intracellular localization of one or more biosynthetic enzymes are sufficient for the creation of novel glycan structures, which can then perform new functions. Glycome composition varies significantly between individuals, which makes them slightly or even significantly different in their ability to execute specific molecular pathways with numerous implications for development and progression of various diseases. This article is part of a Special Issue entitled Glycoproteomics.