Biochimica et biophysica acta
-
Biochim. Biophys. Acta · Sep 2012
ReviewAlternative glycosylation modulates function of IgG and other proteins - implications on evolution and disease.
Nearly all membrane and secreted proteins, as well as numerous intracellular proteins are glycosylated. However, contrary to proteins which are defined by their individual genetic templates, glycans are encoded in a complex dynamic network of hundreds of genes which participate in the complex biosynthetic pathway of protein glycosylation. ⋯ The change in the structure of a protein requires mutations in DNA and subsequent selection in the next generation, while even slight alterations in activity or intracellular localization of one or more biosynthetic enzymes are sufficient for the creation of novel glycan structures, which can then perform new functions. Glycome composition varies significantly between individuals, which makes them slightly or even significantly different in their ability to execute specific molecular pathways with numerous implications for development and progression of various diseases. This article is part of a Special Issue entitled Glycoproteomics.
-
Non-invasive biomarkers, such as those from serum, are ideal for disease prognosis, staging and monitoring. In the past decade, our understanding of the importance of glycosylation changes with disease has evolved. ⋯ The ability to distinguish differences in the glycosylation of proteins between cancer and control patients emphasizes glycobiology as a promising field for potential biomarker identification. Furthermore, the high-throughput and reproducible nature of the chromatography platform have highlighted extensive applications in biomarker discovery and allowed integration of glycomics with other -omics fields, such as proteomics and genomics, making systems glycobiology a reality. This article is part of a Special Issue entitled Glycoproteomics.
-
Biochim. Biophys. Acta · Sep 2012
ReviewDiseases of glycosylation beyond classical congenital disorders of glycosylation.
Diseases of glycosylation are rare inherited disorders, which are often referred to as congenital disorders of glycosylation (CDG). Several types of CDG have been described in the last decades, encompassing defects of nucleotide-sugar biosynthesis, nucleotide-sugar transporters, glycosyltransferases and vesicular transport. Although clinically heterogeneous, most types of CDG are associated with neurological impairments ranging from severe psychomotor retardation to moderate intellectual disabilities. CDG are mainly caused by defects of N-glycosylation, owing to the simple detection of under-glycosylated serum transferrin by isoelectric focusing. ⋯ The knowledge gathered through the investigation of CDG increases the understanding of the functions associated to protein glycosylation in humans. This article is part of a Special Issue entitled Glycoproteomics.
-
Despite fluctuations in dietary iron intake and intermittent losses through bleeding, the plasma iron concentrations in humans remain stable at 10-30 μM. While most of the iron entering blood plasma comes from recycling, appropriate amount of iron is absorbed from the diet to compensate for losses and maintain nontoxic amounts in stores. Plasma iron concentration and iron distribution are similarly regulated in laboratory rodents. ⋯ Hepcidin deficiency causes iron overload in hereditary hemochromatosis and ineffective erythropoiesis. Hepcidin, ferroportin and their regulators represent potential targets for the diagnosis and treatment of iron disorders and anemias. This article is part of a Special Issue entitled: Cell Biology of Metals.
-
Despite the tremendous amount of data over the last 40years, lack of gap junctional intercellular communication (GJIC) or altered expression of gap junction proteins is still a lesser known 'hallmark' of cancer. Expression of astrocytic gap junction protein, connexin43 (Cx43), is often reduced in astrocytomas, the most common neoplasia of the central nervous system (CNS) in adults. Supported by a number of evidences, the global decrease of Cx43 expression appears to be advantageous for the growth of glioma cells. ⋯ Moreover, the involvement of Cx43 in glioma progression seems to be more complex since, in addition, GJIC may increase their resistance to apoptosis and Cx43 may also affect cell homeostasis in a paracrine fashion via hemichannel action. In conclusion, Cx43 appears to be involved at different levels of the glioma progression by acting on cell growth regulation, promotion of cell migration and resistance to apoptosis. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics.