Biochimica et biophysica acta
-
Biochim. Biophys. Acta · Mar 2009
Lysophospholipids stimulate prostate cancer cell migration via TRPV2 channel activation.
The physiological role, the mechanisms of activation, as well as the endogenous regulators for the non-selective cationic channel TRPV2 are not known so far. In the present work we report that endogenous lysophospholipids such as lysophosphatidylcholine (LPC) and lysophosphatidylinositol (LPI) induce a calcium influx via TRPV2 channel. This activation is dependent on the length of the side-chain and the nature of the lysophospholipid head-group. ⋯ The activation of TRPV2 channel by LPC and LPI leads to an increase in the cell migration of the prostate cancer cell line PC3. We have demonstrated that TRPV2 is directly involved in both steady-state and lysophospholipid-stimulated cancer cell migration. Thus, for the first time, we have identified one of the natural regulators of TRPV2 channel, one of the mechanisms of TRPV2 activation and regulation, as well as its pathophysiological role in cancer.
-
Biochim. Biophys. Acta · Oct 2008
Microvascular experimental evidence on the relative significance of restoring oxygen carrying capacity vs. blood viscosity in shock resuscitation.
The development of volume replacement fluids for resuscitation in hemorrhagic shock comprises oxygen carrying and non carrying fluids. Non oxygen carrying fluids or plasma expanders are used up to the transfusion trigger, and upon reaching this landmark either blood, and possibly in the near future oxygen carrying blood substitutes, are used. An experimental program in hemorrhagic shock using the hamster chamber window model allowed to compare the relative performance of most fluids proposed for shock resuscitation. ⋯ This is in part restored by a blood transfusion, independently of the oxygen carrying capacity of red blood cells. These results lead to the proposal that effective blood substitutes must be designed to prevent microvascular collapse, manifested in the decrease of functional capillary density. Achievement of this goal, in combination with the increase of oxygen affinity, significantly postpones the need for a blood transfusion, and lowers the total requirement of restoration of intrinsic oxygen carrying capacity.
-
Biochim. Biophys. Acta · Jul 2008
ReviewCellular energetic metabolism in sepsis: the need for a systems approach.
Sepsis is a complex pathophysiological disorder arising from a systemic inflammatory response to infection. Patients are clinically classified according to the presence of signs of inflammation alone, multiple organ failure (MOF), or organ failure plus hypotension (septic shock). The organ damage that occurs in MOF is not a direct effect of the pathogen itself, but rather of the dysregulated inflammatory response of the patient. ⋯ In this review, we describe how various factors affecting cellular ATP supply and demand appear to be altered in sepsis, and how these vary through the timecourse. We will emphasise the need for an integrated systems approach to determine the relative importance of these factors in both the failure and recovery of different organs. A modular framework is proposed that can be used to assess the control hierarchy of cellular energetics in this complex pathophysiological condition.
-
Biochim. Biophys. Acta · Jan 2008
ReviewSphingosine kinase signalling in immune cells: potential as novel therapeutic targets.
During the last few years, it has become clear that sphingolipids are sources of important signalling molecules. Particularly, the sphingolipid metabolites, ceramide and S1P, have emerged as a new class of potent bioactive molecules, implicated in a variety of cellular processes such as cell differentiation, apoptosis, and proliferation. Sphingomyelin (SM) is the major membrane sphingolipid and is the precursor for the bioactive products. ⋯ Binding of S1P to these receptors trigger an wide range of cellular responses including proliferation, enhanced extracellular matrix assembly, stimulation of adherent junctions, formation of actin stress fibres, and inhibition of apoptosis induced by either ceramide or growth factor withdrawal. Moreover, blocking S1P1-receptor inhibits lymphocyte egress from lymphatic organs. This review summarises the evidence linking SphK signalling pathway to immune-cell activation and based on these data discuss the potential for targeting SphKs to suppress inflammation and other pathological conditions.
-
Patients with inflammatory or neuropathic pain experience hypersensitivity to mechanical, thermal and/or chemical stimuli. Given the diverse etiologies and molecular mechanisms of these pain syndromes, an approach to developing successful therapies may be to target ion channels that contribute to the detection of thermal, mechanical and chemical stimuli and promote the sensitization and activation of nociceptors. ⋯ Six TRPs (TRPV1, TRPV2, TRPV3, TRPV4, TRPM8 and TRPA1) have been shown to be expressed in primary afferent nociceptors, pain sensing neurons, where they act as transducers for thermal, chemical and mechanical stimuli. This short review focuses on their contribution to pain hypersensitivity associated with peripheral inflammatory and neuropathic pain states.