Biochimica et biophysica acta
-
Biochim. Biophys. Acta · Jun 2005
Comparative StudyDifferent response of the knockout mice lacking b-series gangliosides against botulinum and tetanus toxins.
We assessed the response in knockout mice lacking the b-series (G(D2), G(D1b), G(T1b) and G(Q1b)) gangliosides against Clostridium botulinum (types A, B and E) and tetani toxins. We found that botulinum toxins were fully toxic, while tetanus toxin was much less toxic in the knockout mice. Combining the present results with our previous finding that tetanus toxin and botulinum types A and B toxins showed essentially no toxic activity in the knockout mice lacking both the a-series and b-series gangliosides (complex gangliosides), we concluded that the b-series gangliosides is the major essential substance for tetanus toxin, while b-series gangliosides may be not the essential substance for botulinum toxins, at the initial step during the intoxication process in mouse.
-
Just as neuronal activity is essential to normal brain function, microtubule-associated protein tau appears to be critical to normal neuronal activity in the mammalian brain, especially in the evolutionary most advanced species, the homo sapiens. While the loss of functional tau can be compensated by the other two neuronal microtubule-associated proteins, MAP1A/MAP1B and MAP2, it is the dysfunctional, i.e., the toxic tau, which forces an affected neuron in a long and losing battle resulting in a slow but progressive retrograde neurodegeneration. It is this pathology which is characteristic of Alzheimer disease (AD) and other tauopathies. ⋯ The hyperphosphorylation of tau results both from an imbalance between the activities of tau kinases and tau phosphatases and as well as changes in tau's conformation which affect its interaction with these enzymes. A decrease in the activity of protein phosphatase-2A (PP-2A) in AD brain and certain missense mutations seen in frontotemporal dementia promotes the abnormal hyperphosphorylation of tau. Inhibition of this tau abnormality is one of the most promising therapeutic approaches to AD and other tauopathies.
-
Biochim. Biophys. Acta · Dec 2004
ReviewInteractions amongst plasma retinol-binding protein, transthyretin and their ligands: implications in vitamin A homeostasis and transthyretin amyloidosis.
Retinol transport complex consisting of retinol-binding protein (RBP) and transthyretin (TTR) is involved in the transport of retinol (vitamin A) and thyroxine (T(4)) in the human plasma. RBP is a 21-kDa single polypeptide chain protein, synthesized in the liver, which binds and transports retinol to the target organs. The circulating RBP binds to another protein called TTR, a 55-kDa homotetrameric T(4) transport protein. ⋯ TTR2, a poorly characterized protein, was also found bound to RBP in human and pig plasma but its significance remains to be understood. Furthermore, knockout models of both RBP and TTR unequivocally demonstrated the importance of this protein-protein complex in retinoid transport. Thus, interactions amongst multiple components of retinol transport play critical roles in vitamin A homeostasis and TTR amyloidosis.
-
The ubiquitin-proteasome system (UPS) is important for intracellular proteolysis, and is responsible for a diverse array of biologically important cellular processes, such as cell-cycle progression, signaling cascades and developmental programs. This system is also involved in the protein quality control, which maintains the health of the cell. ⋯ Of the several genes that can cause familial PD, parkin, the causative gene of autosomal recessive juvenile parkinsonism (ARJP), is of a special interest because it encodes an ubiquitin-protein ligase, which covalently attaches ubiquitin to target proteins, designating them for destruction by the proteasome. This review summarizes recent studies on the UPS pathway with a special reference to parkin, focusing on how parkin is linked to the pathogenesis of ARJP.
-
Biochim. Biophys. Acta · Nov 2004
Iron nitrosyl hemoglobin formation from the reaction of hydroxylamine and hemoglobin under physiological conditions.
Sickle cell disease patients receiving hydroxyurea (HU) therapy have shown increases in the production of nitric oxide (NO) metabolites, which include iron nitrosyl hemoglobin (HbNO), nitrite, and nitrate. However, the exact mechanism by which HU forms HbNO in vivo is not understood. Previous studies indicate that the reaction of oxyhemoglobin (oxyHb) or deoxyhemoglobin (deoxyHb) with HU are too slow to account for in vivo HbNO production. ⋯ Using electron paramagnetic resonance (EPR) spectroscopy we have detected measurable amounts of HbNO and metHb during the reactions of oxyHb, deoxyHb, and metHb with excess hydroxylamine (HA). We also demonstrate HbNO and metHb formation from the reactions of excess oxyHb, deoxyHb, or metHb and HA, conditions that are more likely to mimic those in vivo. These results indicate that the reaction of hydroxylamine with hemoglobin produces HbNO and lend chemical support for a potential role for hydroxylamine in the in vivo metabolism of hydroxyurea.