Biochimica et biophysica acta
-
Biochim. Biophys. Acta · Jan 2003
Comparative StudyHigh in comparison with low tidal volume ventilation aggravates oxidative stress-induced lung injury.
Ventilator settings influence the development and outcome of acute lung injury. This study investigates the influence of low versus high tidal volume (V(t)) on oxidative stress-induced lung injury. Isolated rabbit lungs were subjected to one of three ventilation patterns (V(t)-positive end-expiratory pressure, PEEP): LVZP (6 ml/kg-0 cm H(2)O), HVZP (12 ml/kg-0 cm H(2)O), LV5P (6 ml/kg-5 cm H(2)O). ⋯ Hypochlorite-induced increase in K(f,c) but not hypochlorite-induced increase in PAP, was significantly attenuated in the LVZP-/LV5P- versus the HVZP-group (K(f,c,max.) 1.0+/-0.23/1.4+/-0.40 versus 3.2+/-1.0*). Experiments with hypochlorite were terminated due to excessive edema (>50 g) at 97+/-2.2/94.5+/-4.5 min in the LVZP-/LV5P-group versus 82+/-3.8* min in the HVZP-group (*: P<0.05). Low V(t) attenuated oxidative stress-induced increase in vascular permeability independently from PIP and PEEP.
-
Sphingolipids have recently emerged as important bioactive molecules in addition to being critical structural components of cellular membranes. These molecules have been implicated in regulating cell growth, differentiation, angiogenesis, apoptosis, and senescene. To study sphingolipid mediated biology, it is necessary to investigate sphingolipid metabolism and its regulation. ⋯ Many of the yeast enzymes are targets of fungal toxins thus underscoring the importance of this pathway in yeast cell regulation. This review focuses on the yeast sphingolipid metabolic pathway and its role in regulation of yeast biology. Implication of the insights gained from yeast to mammalian cell regulation are discussed.
-
Biochim. Biophys. Acta · Dec 2002
ReviewSphingosine kinase, sphingosine-1-phosphate, and apoptosis.
The sphingolipid metabolites ceramide (Cer), sphingosine (Sph), and sphingosine-1-phosphate (S1P) play an important role in the regulation of cell proliferation, survival, and cell death. Cer and Sph usually inhibit proliferation and promote apoptosis, while the further metabolite S1P stimulates growth and suppresses apoptosis. Because these metabolites are interconvertible, it has been proposed that it is not the absolute amounts of these metabolites but rather their relative levels that determines cell fate. ⋯ The cytoprotective effects of SphK/S1P may also be important for clinical benefit, as S1P has been shown to protect oocytes from radiation-induced cell death in vivo [Nat. Med. 6 (2000) 1109]. Here we review the growing literature on the regulation of SphK and the role of SphK and its product, S1P, in apoptosis.
-
Biochim. Biophys. Acta · Nov 2002
Review Comparative StudyStructure, binding, and antagonists in the IL-4/IL-13 receptor system.
Interleukin-4 (IL-4) and IL-13 are the only cytokines known to bind to the receptor chain IL-4Ralpha. Receptor sharing by these two cytokines is the molecular basis for their overlapping biological functions. Both are key factors in the development of allergic hypersensitivity, and they also play a major role in exacerbating allergic and asthmatic symptoms. ⋯ IL-4 antagonists prevent the development of allergic disease in vivo and an antagonistic variant of human IL-4 is now in clinical trials for asthma. Detailed knowledge of the site of interaction of IL-4 and IL-4Ralpha has been gained by structure analysis of the complex of these two proteins and through functional studies employing mutants of IL-4 and its receptor subunits. Based on these new data, the hitherto elusive goal of designing small molecular mimetics may be feasible.
-
Biochim. Biophys. Acta · Nov 2002
Comparative StudyDAPK catalytic activity in the hippocampus increases during the recovery phase in an animal model of brain hypoxic-ischemic injury.
Death-associated protein kinase (DAPK) is a pro-apoptotic, calmodulin (CaM)-regulated protein kinase whose mRNA levels increase following cerebral ischemia. However, the relationship between DAPK catalytic activity and cerebral ischemia is not known. This knowledge is critical as DAPK function is dependent on the catalytic activity of its kinase domain. ⋯ Therefore, we examined the change of DAPK in an experimentally tractable cell culture model of neuronal differentiation. We found that DAPK catalytic activity and protein levels increase after nerve growth factor (NGF)-induced differentiation of rat PC12 cells. These results suggest that DAPK may have a previously unappreciated role in neuronal development or recovery from injury, and that potential future therapies targeting DAPK should consider a restricted time window.