Biochimica et biophysica acta
-
Biochim. Biophys. Acta · Jul 2016
ReviewMaturation status of sarcomere structure and function in human iPSC-derived cardiac myocytes.
Human heart failure due to myocardial infarction is a major health concern. The paucity of organs for transplantation limits curative approaches for the diseased and failing adult heart. Human induced pluripotent stem cell-derived cardiac myocytes (hiPSC-CMs) have the potential to provide a long-term, viable, regenerative-medicine alternative. ⋯ Thus, hiPSC-CMs have several hurdles to overcome before they find their way into translational medicine. In this review, we address the progress that has been made, the void in knowledge and the challenges that remain. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
-
Biochim. Biophys. Acta · Jul 2016
Cardiomyocytes from human pluripotent stem cells: From laboratory curiosity to industrial biomedical platform.
Cardiomyocytes from human pluripotent stem cells (hPSCs-CMs) could revolutionise biomedicine. Global burden of heart failure will soon reach USD $90bn, while unexpected cardiotoxicity underlies 28% of drug withdrawals. Advances in hPSC isolation, Cas9/CRISPR genome engineering and hPSC-CM differentiation have improved patient care, progressed drugs to clinic and opened a new era in safety pharmacology. ⋯ Other developments needed for widespread hPSC-CM utility include subtype specification, cost reduction of large scale differentiation and elimination of the phenotyping bottleneck. This review will consider these factors in the evolution of hPSC-CM technologies, as well as their integration into high content industrial platforms that assess structure, mitochondrial function, electrophysiology, calcium transients and contractility. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
-
Biochim. Biophys. Acta · Jul 2016
Ribosomal protein S6 kinase1 coordinates with TOR-Raptor2 to regulate thylakoid membrane biosynthesis in rice.
Ribosomal protein S6 kinase (S6K) functions as a key component in the target of rapamycin (TOR) pathway involved in multiple processes in eukaryotes. The role and regulation of TOR-S6K in lipid metabolism remained unknown in plants. Here we provide genetic and pharmacological evidence that TOR-Raptor2-S6K1 is important for thylakoid galactolipid biosynthesis and thylakoid grana modeling in rice (Oryza sativa L.). ⋯ A significant reduction in galactolipid content was found in the s6k1, raptor2 mutant or TOR-inhibited plants, which was accompanied by decreased transcript levels of the set of genes such as lipid phosphate phosphatase α5 (LPPα5), MGDG synthase 1 (MGD1), and DGDG synthase 1 (DGD1) involved in galactolipid synthesis, compared to the control plants. Moreover, loss of LPPα5 exhibited a similar phenotype with pale yellow-green leaves. These results suggest that TOR-Raptor2-S6K1 is important for modulating thylakoid membrane lipid biosynthesis, homeostasis, thus enhancing thylakoid grana architecture and normal photosynthesis ability in rice.
-
Biochim. Biophys. Acta · Jun 2016
Inhibition of ceramide de novo synthesis by myriocin produces the double effect of reducing pathological inflammation and exerting antifungal activity against A. fumigatus airways infection.
Fungal infections develop in pulmonary chronic inflammatory diseases such as asthma, Chronic Obstructive Pulmonary Disease (COPD) and Cystic Fibrosis (CF). The available antifungal drugs may fail to eradicate fungal pathogens, that can invade the lungs and vessels and spread by systemic circulation taking advantage of defective lung immunity. An increased rate of sphingolipid de novo synthesis, leading to ceramide accumulation, was demonstrated in CF and COPD inflamed lungs. The inhibitor of sphingolipid synthesis myriocin reduces inflammation and ameliorates the response against bacterial airway infection in CF mice. Myriocin also inhibits sphingolipid synthesis in fungi and exerts a powerful fungistatic effect. ⋯ Myriocin represents a powerful agent for inflammatory diseases and fungal infection.
-
Biochim. Biophys. Acta · May 2016
Cystathionine γ lyase-hydrogen sulfide increases peroxisome proliferator-activated receptor γ activity by sulfhydration at C139 site thereby promoting glucose uptake and lipid storage in adipocytes.
Adipocytes express the cystathionine γ lyase (CSE)-hydrogen sulfide (H2S) system. CSE-H2S promotes adipogenesis but ameliorates adipocyte insulin resistance. We investigated the mechanism of how CSE-H2S induces these paradoxical effects. ⋯ In obese mice fed an HFD for 13 weeks, H2S treatment increased PPARγ sulfhydration in adipose tissues and attenuated insulin resistance but did not increase obesity. In conclusion, CSE-H2S increased PPARγ activity by direct sulfhydration at the C139 site, thereby changing glucose into triglyceride storage in adipocytes. CSE-H2S-mediated PPARγ activation might be a new therapeutic target for diabetes associated with obesity.