Biochimica et biophysica acta
-
Biochim. Biophys. Acta · Feb 2014
ReviewDetection of oxidized and glycated proteins in clinical samples using mass spectrometry--a user's perspective.
Proteins in human tissues and body fluids continually undergo spontaneous oxidation and glycation reactions forming low levels of oxidation and glycation adduct residues. Proteolysis of oxidised and glycated proteins releases oxidised and glycated amino acids which, if they cannot be repaired, are excreted in urine. ⋯ Quantitative measurement of protein oxidation and glycation adducts provides information on level of exposure to potentially damaging protein modifications, protein inactivation in ageing and disease, metabolic control, protein turnover, renal function and other aspects of body function. Reliable and clinically assessable analysis is required for translation of measurement to clinical diagnostic use. Stable isotopic dilution analysis LC-MS/MS provides a "gold standard" approach and reference methodology to which other higher throughput methods such as immunoassay and indirect methods are preferably corroborated by researchers and those commercialising diagnostic kits and reagents. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn.
-
Biochim. Biophys. Acta · Jan 2014
ReviewCreate and preserve: proteostasis in development and aging is governed by Cdc48/p97/VCP.
The AAA-ATPase Cdc48 (also called p97 or VCP) acts as a key regulator in proteolytic pathways, coordinating recruitment and targeting of substrate proteins to the 26S proteasome or lysosomal degradation. However, in contrast to the well-known function in ubiquitin-dependent cellular processes, the physiological relevance of Cdc48 in organismic development and maintenance of protein homeostasis is less understood. Therefore, studies on multicellular model organisms help to decipher how Cdc48-dependent proteolysis is regulated in time and space to meet developmental requirements. ⋯ This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
-
Heart failure (HF) biomarkers have dramatically impacted the way HF patients are evaluated and managed. B-type natriuretic peptide (BNP) and N-terminal proBNP (NT-proBNP) are the gold standard biomarkers in determining the diagnosis and prognosis of HF, and studies on natriuretic peptide-guided HF management look promising. ⋯ Novel biomarkers, such as mid-regional pro atrial natriuretic peptide (MR-proANP), mid-regional pro adrenomedullin (MR-proADM), highly sensitive troponins, soluble ST2 (sST2), growth differentiation factor (GDF)-15 and Galectin-3, show potential in determining prognosis beyond the established natriuretic peptides, but their role in the clinical care of the patient is still partially defined and more studies are needed. This article is part of a Special Issue entitled: Heart failure pathogenesis and emerging diagnostic and therapeutic interventions.
-
Biochim. Biophys. Acta · Dec 2013
ReviewEndothelial dysfunction - a major mediator of diabetic vascular disease.
The vascular endothelium is a multifunctional organ and is critically involved in modulating vascular tone and structure. Endothelial cells produce a wide range of factors that also regulate cellular adhesion, thromboresistance, smooth muscle cell proliferation, and vessel wall inflammation. Thus, endothelial function is important for the homeostasis of the body and its dysfunction is associated with several pathophysiological conditions, including atherosclerosis, hypertension and diabetes. ⋯ This review will focus on the mechanisms and therapeutics that specifically target endothelial dysfunction in the context of a diabetic setting. Mechanisms including altered glucose metabolism, impaired insulin signaling, low-grade inflammatory state, and increased reactive oxygen species generation will be discussed. The importance of developing new pharmacological approaches that upregulate endothelium-derived nitric oxide synthesis and target key vascular ROS-producing enzymes will be highlighted and new strategies that might prove clinically relevant in preventing the development and/or retarding the progression of diabetes associated vascular complications.
-
Biochim. Biophys. Acta · Nov 2013
ReviewBioinformatic perspectives in the neuronal ceroid lipofuscinoses.
The neuronal ceroid lipofuscinoses (NCLs) are a group of rare genetic diseases characterised clinically by the progressive deterioration of mental, motor and visual functions and histopathologically by the intracellular accumulation of autofluorescent lipopigment - ceroid - in affected tissues. The NCLs are clinically and genetically heterogeneous and more than 14 genetically distinct NCL subtypes have been described to date (CLN1-CLN14) (Haltia and Goebel, 2012 [1]). In this review we will chronologically summarise work which has led over the years to identification of NCL genes, and outline the potential of novel genomic techniques and related bioinformatic approaches for further genetic dissection and diagnosis of NCLs. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.