The Journal of infectious diseases
-
We simulated 3 transmission modes, including close-contact, respiratory droplets and aerosol routes, in the laboratory. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be highly transmitted among naive human angiotensin-converting enzyme 2 (hACE2) mice via close contact because 7 of 13 naive hACE2 mice were SARS-CoV-2 antibody seropositive 14 days after being introduced into the same cage with 3 infected-hACE2 mice. For respiratory droplets, SARS-CoV-2 antibodies from 3 of 10 naive hACE2 mice showed seropositivity 14 days after introduction into the same cage with 3 infected-hACE2 mice, separated by grids. In addition, hACE2 mice cannot be experimentally infected via aerosol inoculation until continued up to 25 minutes with high viral concentrations.
-
Aerosols represent a potential transmission route of COVID-19. This study examined effect of simulated sunlight, relative humidity, and suspension matrix on stability of SARS-CoV-2 in aerosols. Simulated sunlight and matrix significantly affected decay rate of the virus. ⋯ Mean decay rate without simulated sunlight across all relative humidity levels was 0.008 ± 0.011 min-1 (90% loss, 286 minutes). These results suggest that the potential for aerosol transmission of SARS-CoV-2 may be dependent on environmental conditions, particularly sunlight. These data may be useful to inform mitigation strategies to minimize the potential for aerosol transmission.
-
Critical illness such as sepsis is a life-threatening syndrome defined as a dysregulated host response to infection and is characterized by patients exhibiting impaired immune response. In the field of diagnosis, a gap still remains in identifying the immune profile of critically ill patients in the intensive care unit (ICU). ⋯ The use of IPP showed great potential for the development of a fully automated, rapid, and easy-to-use immune profiling tool. The IPP tool may be used in the future to stratify critically ill patients in the ICU according to their immune status. Such stratification will enable personalized management of patients and guide treatments to avoid secondary infections and lower mortality.
-
Sepsis mortality has improved following advancements in early recognition and standardized management, including emphasis on early administration of appropriate antimicrobials. However, guidance regarding antimicrobial duration in sepsis is surprisingly limited. Decreased antibiotic exposure is associated with lower rates of de novo resistance development, Clostridioides difficile-associated disease, antibiotic-related toxicities, and health care costs. ⋯ Evidence is significantly limited by noninferiority trial designs and exclusion of critically ill patients in many trials. Potential challenges to shorter antimicrobial duration in sepsis include inadequate source control, treatment of multidrug-resistant organisms, and pharmacokinetic alterations that predispose to inadequate antimicrobial levels. Additional studies specifically targeting patients with clinical indicators of sepsis are needed to guide measures to safely reduce antimicrobial exposure in this high-risk population while preserving clinical effectiveness.
-
The creation of dedicated sepsis guidelines and their broad dissemination over the past 2 decades have contributed to significant improvements in sepsis care. These successes have spurred the creation of bundled care mandates by major healthcare payers, such as the Center for Medicare and Medicaid Services. ⋯ In this review, we review the risks and benefits of mandated care for sepsis, with particular emphasis on the potential adverse consequences of common bundle components such as early empiric antibiotics, weight-based fluid administration, and serum lactate monitoring. Unlike guideline-directed care, mandated care in sepsis precludes providers from tailoring treatments to heterogeneous clinical scenarios and may lead to unintended harms for individual patients.