Optics express
-
We introduce the Standing Wave Optical Line Trap (SWOLT) as a novel tool for precise optical manipulation and long-range transport of nano-scale objects at low laser power. We show that positioning and transport along the trap can be achieved by controlling the lateral component of the scattering force while the confinement of the particles by the gradient force remains unaffected. Multiple gold nanoparticles with a diameter of 100 nm were trapped at a power density 3 times smaller than previously reported while their transverse fluctuations remained sufficiently small (±36 nm) to maintain the order of the particles. The SWOLT opens new doors for sorting, mixing, and assembly of synthetic and biological nanoparticles.
-
Nanoparticle-assisted photo-thermal (NAPT) ablation has become a new and attractive modality for the treatment of cancerous tumors. This therapy exploits the passive accumulation of intravenously delivered optically resonant metal nanoparticles into tumors, however, the circulating bioavailability of these particles is often unknown. We present a non-invasive optical device capable of monitoring the circulation of optically resonant gold nanorods. ⋯ We simultaneously report the circulation of gold nanorods and oximetry for six hours post-injection in mice with no anesthesia and remove the probe when not collecting data. The instrument shows good agreement (R(2) = 0.903, n = 30) with ex vivo spectrophotometric analysis of blood samples. The real-time feedback provided has a strong potential for reducing variability and thus improving the efficacy of similar clinical therapies.
-
We constructed a high speed and high-resolution Stokes vector retinal imaging polarimeter with dual electro-optical modulators based on adaptive optics scanning laser ophthalmoscope. By varying the voltages on the EO crystals line by line, we were able to measure over 500,000 Stokes vectors per second. We used this system in three human subjects demonstrating the capability of the system to be employed in vivo. The high speed effectively decreases the adverse impact of eye motion induced errors in polarization calculations, improving the contrast of retinal structures based on their polarization properties.
-
We have proposed and experimentally demonstrated a 60-GHz bidirectional radio-over-fiber system with downstream orthogonal frequency division multiplexing address (OFDMA) and wavelength reuse upstream single-carrier frequency division multiple address (SC-FDMA). In the downstream, a 3-dB optical coupler is used for two-carrier injection-locking a distributed feedback (DFB) laser in order to realize the single-sideband modulation. ⋯ Transmission of 9.65-Gb/s 16-QAM downstream OFDMA on 60-GHz carrier and 5-Gb/s QPSK upstream SC-FDMA (2.5 Gb/s for each user) are both successfully demonstrated over 53-km standard single mode fiber without chromatic dispersion compensation. The crosstalk between the downstream OFDMA and the upstream SC-FDMA can be neglected.
-
We present the nodal aberration field response of Ritchey-Chrétien telescopes to a combination of optical component misalignments and astigmatic figure error on the primary mirror. It is shown that both astigmatic figure error and secondary mirror misalignments lead to binodal astigmatism, but that each type has unique, characteristic locations for the astigmatic nodes. ⋯ For the case of secondary mirror misalignments, one of the astigmatic nodes remains nearly at the field center (in a coma compensated state) as presented in Optics Express 18, 5282-5288 (2010), while the second astigmatic node moves away from the field center. This distinction leads directly to alignment methods that preserve the dynamic range of the active wavefront compensation component.