Restorative neurology and neuroscience
-
Restor. Neurol. Neurosci. · Jan 2014
Randomized Controlled TrialAfter vs. priming effects of anodal transcranial direct current stimulation on upper extremity motor recovery in patients with subacute stroke.
Transcranial direct current stimulation (tDCS) of the motor cortex seems to be effective in improving motor performance in patients with chronic stroke, while some recent findings have reported conflicting results for the subacute phase. We aimed to verify whether upper extremity motor rehabilitation could be enhanced by treatment with tDCS administered before a rehabilitative session. ⋯ Anodal brain stimulation improves hand dexterity but does not increase the effectiveness of the rehabilitation directly. These results suggest the presence of aftereffects, not priming effects, of A-tDCS superimposed onto motor learning phenomena.
-
Restor. Neurol. Neurosci. · Jan 2014
Comparative StudyIncreasing human leg motor cortex excitability by transcranial high frequency random noise stimulation.
Transcranial random noise stimulation (tRNS) can increase the excitability of hand area of the primary motor cortex (M1). The aim of this study was to compare the efficacy of tRNS and transcranial direct current stimulation (tDCS) on the leg motor cortex. ⋯ Our results suggest that although the leg area has a deeper position in the cortex compared to the hand area, it can be reached by weak transcranial currents. Both anodal tDCS and tRNS had comparable effect on cortical excitability.
-
Restor. Neurol. Neurosci. · Jan 2014
Clinical TrialAnodal transcranial direct current stimulation over the dorsolateral prefrontal cortex improves anorexia nervosa: A pilot study.
Existing treatments for adults with anorexia nervosa (AN) have limited proven efficacy. New treatments that have been suggested involve targeted, brain-directed interventions such as transcranial direct current stimulation (tDCS). We describe findings from seven individuals with treatment-resistant AN who received 10 sessions of anodal tDCS, over the left dorsolateral prefrontal cortex (DLPFC). ⋯ These findings suggest that tDCS has potential as an adjuvant treatment for AN and deserves further study.
-
Restor. Neurol. Neurosci. · Jan 2014
Combining enriched environment and induced pluripotent stem cell therapy results in improved cognitive and motor function following traumatic brain injury.
Despite advances towards potential clinically viable therapies there has been only limited success in improving functional recovery following traumatic brain injury (TBI). In rats, exposure to an enriched environment (EE) improves learning and fosters motor skill development. Induced pluripotent stem cells (iPSC) have been shown to survive transplantation and influence the recovery process. The current study evaluated EE and iPSC as a polytherapy for remediating cognitive deficits following medial frontal cortex (mFC) controlled cortical impact (CCI) injury. ⋯ Overall, EE or iPSC therapy improved cognition and motor performance, however, full cognitive restoration was seen only with the EE/iPSC treatment. These data suggest that EE/iPSC therapy should be explored as a potential, clinically relevant, treatment for TBI.