Toxicology and applied pharmacology
-
Toxicol. Appl. Pharmacol. · Oct 2013
Inhibition of chlorine-induced pulmonary inflammation and edema by mometasone and budesonide.
Chlorine gas is a widely used industrial compound that is highly toxic by inhalation and is considered a chemical threat agent. Inhalation of high levels of chlorine results in acute lung injury characterized by pneumonitis, pulmonary edema, and decrements in lung function. Because inflammatory processes can promote damage in the injured lung, anti-inflammatory therapy may be of potential benefit for treating chemical-induced acute lung injury. ⋯ Mometasone or budesonide also significantly inhibited pulmonary edema assessed 1 day after chlorine exposure. Chlorine inhalation resulted in airway hyperreactivity to inhaled methacholine, but neither mometasone nor budesonide significantly affected this parameter. The results suggest that mometasone and budesonide may represent potential treatments for chemical-induced lung injury.
-
Toxicol. Appl. Pharmacol. · Oct 2013
Biodistribution of the GATA-3-specific DNAzyme hgd40 after inhalative exposure in mice, rats and dogs.
The DNAzyme hgd40 was shown to effectively reduce expression of the transcription factor GATA-3 RNA which plays an important role in the regulation of Th2-mediated immune mechanisms such as in allergic bronchial asthma. However, uptake, biodistribution and pharmacokinetics of hgd40 have not been investigated yet. We examined local and systemic distribution of hgd40 in naive mice and mice suffering from experimental asthma. ⋯ The plasma pharmacokinetic profile was dose and time dependent. Repeated administration did not lead to drug accumulation in plasma of dogs and rats. These pharmacokinetic of hgd40 provide guidance for clinical development, and support an infrequent and convenient dose administration regimen.
-
Toxicol. Appl. Pharmacol. · Oct 2013
Tributyltin-induced endoplasmic reticulum stress and its Ca(2+)-mediated mechanism.
Organotin compounds, especially tributyltin chloride (TBT), have been widely used in antifouling paints for marine vessels, but exhibit various toxicities in mammals. The endoplasmic reticulum (ER) is a multifunctional organelle that controls post-translational modification and intracellular Ca(2+) signaling. When the capacity of the quality control system of ER is exceeded under stress including ER Ca(2+) homeostasis disruption, ER functions are impaired and unfolded proteins are accumulated in ER lumen, which is called ER stress. ⋯ TBT increased intracellular Ca(2+) concentration in a TBT-concentration-dependent manner, and Ca(2+) increase in 700nM TBT was mainly blocked by 50μM dantrolene, a ryanodine receptor antagonist (about 70% inhibition). Dantrolene also partially but significantly inhibited TBT-induced GRP78 expression and cell death. These results suggest that TBT increases intracellular Ca(2+) concentration by releasing Ca(2+) from ER, thereby causing ER stress.
-
Toxicol. Appl. Pharmacol. · Oct 2013
Statins attenuate the development of atherosclerosis and endothelial dysfunction induced by exposure to urban particulate matter (PM10).
Exposure to ambient air particulate matter (particles less than 10μm or PM10) has been shown to be an independent risk factor for the development and progression of atherosclerosis. The 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) have well-established anti-inflammatory properties. The aim of this study was to determine the impact of statins on the adverse functional and morphological changes in blood vessels induced by PM10. ⋯ Lovastatin decreased the expression of these mediators in atherosclerotic lesions and improved endothelial dysfunction. However, lovastatin was unable to reduce blood lipid levels to the baseline level in rabbits exposed to PM10. Taken together, statins protect against PM10-induced cardiovascular disease by reducing atherosclerosis and improving endothelial function via their anti-inflammatory properties.
-
Toxicol. Appl. Pharmacol. · Oct 2013
The role of renal proximal tubule P450 enzymes in chloroform-induced nephrotoxicity: utility of renal specific P450 reductase knockout mouse models.
The kidney is a primary target for numerous toxic compounds. Cytochrome P450 enzymes (P450) are responsible for the metabolic activation of various chemical compounds, and in the kidney are predominantly expressed in proximal tubules. The aim of this study was to test the hypothesis that renal proximal tubular P450s are critical for nephrotoxicity caused by chemicals such as chloroform. ⋯ There were no significant differences in chloroform levels in the blood, liver, or kidney, between PTCN and WT mice, or between XPT-CL and CL mice. These findings indicate that local P450-dependent activities play an important role in the nephrotoxicity induced by chloroform. Our results also demonstrate the usefulness of these novel mouse models for studies of chemical-induced kidney toxicity.