Toxicology and applied pharmacology
-
Toxicol. Appl. Pharmacol. · Apr 2015
Honokiol activates the LKB1-AMPK signaling pathway and attenuates the lipid accumulation in hepatocytes.
Honokiol is a bioactive neolignan compound isolated from the species of Magnolia. This study was designed to elucidate the cellular mechanism by which honokiol alleviates the development of non-alcoholic steatosis. HepG2 cells were treated with honokiol for 1h, and then exposed to 1mM free fatty acid (FFA) for 24h to simulate non-alcoholic steatosis in vitro. ⋯ Honokiol stimulated LKB1 phosphorylation, and genetic deletion of LKB1 blocked the effect of honokiol on SREBP-1c maturation and the induction of SCD-1 and FAS proteins in FFA-exposed HepG2 cells. Honokiol attenuated the increases in hepatic TG and lipogenic protein levels and fat accumulation in the mice fed with high-fat diet, while significantly induced LKB1 and AMPK phosphorylation. Taken together, our findings suggest that honokiol has an anti-lipogenic effect in hepatocytes, and this effect may be mediated by the LKB1-AMPK signaling pathway, which induces ACC phosphorylation and inhibits SREBP-1c maturation in hepatocytes.
-
Toxicol. Appl. Pharmacol. · Jan 2015
High level of oxygen treatment causes cardiotoxicity with arrhythmias and redox modulation.
Hyperoxia exposure in mice leads to cardiac hypertrophy and voltage-gated potassium (Kv) channel remodeling. Because redox balance of pyridine nucleotides affects Kv function and hyperoxia alters cellular redox potential, we hypothesized that hyperoxia exposure leads to cardiac ion channel disturbances and redox changes resulting in arrhythmias. In the present study, we investigated the electrical changes and redox abnormalities caused by 72h hyperoxia treatment in mice. ⋯ Hyperoxia exposure altered cardiac levels of mRNA/protein expression of; Kv1.5, Kvβ subunits and SiRT1, and increased ratios of reduced pyridine nucleotides (NADH/NAD & NADPH/NADP). Inhibition of SiRT1 in H9C2 cells using Splitomicin resulted in decreased SiRT1 and Kv1.5 expression, suggesting that SiRT1 may mediate Kv1.5 downregulation. In conclusion, the cardiotoxic effects of hyperoxia exposure involve ion channel disturbances and redox changes resulting in arrhythmias.
-
Toxicol. Appl. Pharmacol. · Dec 2014
Comparative StudyA comprehensive evaluation of the efficacy of leading oxime therapies in guinea pigs exposed to organophosphorus chemical warfare agents or pesticides.
The currently fielded pre-hospital therapeutic regimen for the treatment of organophosphorus (OP) poisoning in the United States (U. S.) is the administration of atropine in combination with an oxime antidote (2-PAM Cl) to reactivate inhibited acetylcholinesterase (AChE). Depending on clinical symptoms, an anticonvulsant, e.g., diazepam, may also be administered. ⋯ Male Hartley guinea pigs were subcutaneously challenged with a lethal level of OP and treated at approximately 1 min post challenge with atropine followed by equimolar oxime therapy (2-PAM Cl, HI-6 DMS, obidoxime Cl₂, TMB-4, MMB4-DMS, HLö-7 DMS, MINA, and RS194B) or therapeutic-index (TI) level therapy (HI-6 DMS, MMB4-DMS, MINA, and RS194B). Clinical signs of toxicity were observed for 24 h post challenge and blood cholinesterase [AChE and butyrylcholinesterase (BChE)] activity was analyzed utilizing a modified Ellman's method. When the oxime is standardized against the HED of 2-PAM Cl for guinea pigs, the evidence from clinical observations, lethality, quality of life (QOL) scores, and cholinesterase reactivation rates across all OPs indicated that MMB4 DMS and HLö-7 DMS were the two most consistently efficacious oximes.
-
Toxicol. Appl. Pharmacol. · Dec 2014
Comparative StudyPivotal roles of p53 transcription-dependent and -independent pathways in manganese-induced mitochondrial dysfunction and neuronal apoptosis.
Chronic exposure to excessive manganese (Mn) has been known to lead to neuronal loss and a clinical syndrome resembling idiopathic Parkinson's disease (IPD). p53 plays an integral role in the development of various human diseases, including neurodegenerative disorders. However, the role of p53 in Mn-induced neuronal apoptosis and neurological deficits remains obscure. In the present study, we showed that p53 was critically involved in Mn-induced neuronal apoptosis in rat striatum through both transcription-dependent and -independent mechanisms. ⋯ Moreover, blockage of p53 activities with PFT-α and PFT-μ significantly attenuated Mn-induced reactive oxidative stress (ROS) generation and mitochondrial H₂O₂ production. Finally, we observed that pretreatment with PFT-α and PFT-μ ameliorated Mn-induced apoptosis in PC12 cells. Collectively, these findings implicate that p53 transcription-dependent and -independent pathways may play crucial roles in the regulation of Mn-induced neuronal death.
-
Toxicol. Appl. Pharmacol. · Dec 2014
Comparative StudyMechanistic studies of cancer cell mitochondria- and NQO1-mediated redox activation of beta-lapachone, a potentially novel anticancer agent.
Beta-lapachone (beta-Lp) derived from the Lapacho tree is a potentially novel anticancer agent currently under clinical trials. Previous studies suggested that redox activation of beta-Lp catalyzed by ⋯ quinone oxidoreductase 1 (NQO1) accounted for its killing of cancer cells. However, the exact mechanisms of this effect remain largely unknown. Using chemiluminescence and electron paramagnetic resonance (EPR) spin-trapping techniques, this study for the first time demonstrated the real-time formation of ROS in the redox activation of beta-lapachone from cancer cells mediated by mitochondria and NQO1 in melanoma B16-F10 and hepatocellular carcinoma HepG2 cancer cells. ES936, a highly selective NQO1 inhibitor, and rotenone, a selective inhibitor of mitochondrial electron transport chain (METC) complex I were found to significantly block beta-Lp meditated redox activation in B16-F10 cells. In HepG2 cells ES936 inhibited beta-Lp-mediated oxygen radical formation by ~80% while rotenone exerted no significant effect. These results revealed the differential contribution of METC and NQO1 to beta-lapachone-induced ROS formation and cancer cell killing. In melanoma B16-F10 cells that do not express high NQO1 activity, both NOQ1 and METC play a critical role in beta-Lp redox activation. In contrast, in hepatocellular carcinoma HepG2 cells expressing extremely high NQO1 activity, redox activation of beta-Lp is primarily mediated by NQO1 (METC plays a minor role). These findings will contribute to our understanding of how cancer cells are selectively killed by beta-lapachone and increase our ability to devise strategies to enhance the anticancer efficacy of this potentially novel drug while minimizing its possible adverse effects on normal cells.