Journal of thoracic disease
-
Veno-venous extracorporeal membrane oxygenation (VV ECMO) is a rescue treatment for acute respiratory distress syndrome (ARDS) failing protective mechanical ventilation. It temporarily provides proper gas exchange: hypoxia is treated by adjusting the blood flow rate and fraction in spired oxygen over the ventilator (FiO2) on the extracorporeal membrane oxygenation (ECMO) circuit while CO2 removal is regulated by the ECMO fresh gas flow. Therefore, ventilator settings can be gradually reduced allowing the lungs to rest and recover. ⋯ Notably, in almost all papers dealing with data on VV ECMO support, the management of weaning and the weaning procedure itself are not described. The aim of this paper is to make a picture of VV ECMO weaning, as it is performed in three European large volume intensive care units (ICUs) which represent referral centers for VV ECMO treatment. We focused on data concerning the timing of VV ECMO weaning and parameters at the time of weaning, in order to assess adequacy and safety of VV ECMO removal.
-
Severe ARDS can be complicated by right ventricular (RV) failure. The etiology of RV failure in ARDS is multifactorial. Vascular alterations, hypoxia, hypercapnia and effects of mechanical ventilation may play a role. ⋯ In this review, the etiology, diagnosis and management of RV failure in ARDS will be briefly outlined. The beneficial effect of veno-venous (VV) ECMO on RV function in these patients will be illustrated. Based on this, we will give recommendations regarding choice of ECMO modus and provide an algorithm for management of RV failure in VV ECMO supported patients.
-
Extracorporeal membrane oxygenation (ECMO) is described as a modified, smaller cardiopulmonary bypass circuit. The veno-venous (VV) ECMO circuit drains venous blood, oxygenate the blood, and pump the blood back into the same venous compartment. Draining and reinfusing in the same compartment means there are a risk of recirculation. ⋯ Efficiency can be reasonable in either strategy if the cannulas are carefully positioned and monitored during the dynamic procedure of pulmonary disease. The disadvantage draining from IVC only occurs when there is a need for converting from VV to veno-arterial (VA) ECMO, reinfusing in the femoral artery. Then draining from SVC is the most efficient strategy, draining low saturated venous blood, and also means low risk of dual circulation.
-
Veno-venous extracorporeal membrane oxygenation (VV ECMO) has started to be applied in awake spontaneously breathing patients as an alternative to invasive mechanical ventilation. As the physiologic cardiorespiratory variability is increased in this condition, the dynamic interaction between patient respiratory activity and extracorporeal system function affects the clinical management. The effect of extracorporeal CO2 removal on patient respiratory drive is variable and not always predictable, with some patients responding to CO2 removal with a decrease in respiratory rate and effort and other patients demonstrating a persistently high work of breathing independent on CO2 unload. ⋯ Assessment of native lung function and of its evolution over time is challenging while respiratory gas exchanges are provided by the extracorporeal system, since both oxygenation and decarboxylation capabilities can be fully evaluated only when alveolar ventilation is restored reducing extracorporeal CO2 removal. The rationale for using "awake ECMO" varies across different types of acute respiratory failure: the pathophysiological mechanisms of the underlying disease affect the patient-ECMO interaction and the goal of support. In this review we discuss the pathophysiology, technical challenges and monitoring issues of the use of ECMO in awake spontaneously breathing patients with acute respiratory failure of different etiologies.
-
Data evaluating pharmacokinetic/pharmacodynamic (PK/PD) aspect in the pediatric population are scarce especially regarding the pediatric intensive care unit. Dosing of frequently used drugs (sedatives, analgesics, antibiotics and cardiovascular drugs) are mainly based on non "pediatric intensive care unit (PICU)" patients, and sometimes are translated from adult patients. ⋯ The use of extracorporeal membrane oxygenation is associated with major PK and PD changes, especially in neonates and children. The objective of this review is to assess the current literature for pediatric PK data in patients receiving extracorporeal membrane oxygenation (ECMO).