Transfusion
-
Freeze-dried plasma was developed by the US Army for the resuscitation of combat casualties during World War II. The French Military Blood Institute began producing French lyophilized plasma (FLYP) in 1949, in accordance with French blood product guidelines. Since 2010, a photochemical pathogen inactivation process has been implemented to reduce the remaining transfusion-related infectious risk. ⋯ Clinical monitoring with a focus on hemostasis was implemented in 2002 and expanded in 2010. The data, obtained from overseas operations, confirmed the indications, the safety and the clinical efficacy of FLYP. Further research is needed to determine specific indications for FLYP in the therapeutic management of civilian patients with severe hemorrhage.
-
Whole blood (WB) has been used in combat since World War I as it is readily available and replaces every element of shed blood. Component therapy has become standard; however, recent military successes with WB resuscitation have revived the debate regarding wider WB use. Characterization of optimal WB storage is needed. We hypothesized that refrigeration preserves WB function and that a pathogen reduction technology (PRT) based on riboflavin and ultraviolet light has no deleterious effect over 21 days of storage. ⋯ The in vitro hemostatic function of WB is largely unaffected by PRT treatment and better preserved by cold storage over 21 days. Refrigerated PRT WB may be suitable for trauma resuscitation. Clinical studies are warranted.
-
Survival after severe traumatic shock can be complicated by a number of pathophysiologic processes that ensue after the initial trauma. One of these is trauma-induced coagulopathy (TIC) whose onset may occur before initial fluid resuscitation. ⋯ This paper will provide a general review of these linkages and identify knowledge gaps as well as suggest new approaches and areas of investigation, which may both limit the development of TIC as well as produce insights into its pathophysiology. A better understanding of these issues will be necessary in order to advance the practice of remote damage control resuscitation.